PTH-related protein (PTHrP) is homologous with PTH. PTH, an effective anabolic agent for treating osteoporosis, has been shown to stimulate both bone resorption by osteoclasts and bone formation by osteoblasts. We examined whether PTHrP might share anabolic properties in osteoporosis. A 3-month double-blind, prospective, placebo-controlled, randomized clinical trial was performed in 16 healthy postmenopausal women with osteoporosis. All received calcium and vitamin D, and all continued their prior hormone replacement therapy. One group also received daily sc PTHrP (6.56 microg/kg x d, or approximately 400 microg/d), and the other group received placebo injections. The PTHrP group displayed a 4.7% increase in lumbar spine bone mineral density (BMD) and also demonstrated an increase in osteoblastic bone formation, as assessed using serum osteocalcin measurements. In contrast, there was no increase in bone-specific alkaline phosphatase and collagen-1 propeptide or either of two markers of osteoclastic bone resorption, N-telopeptide, or deoxypyridinoline. One subject in the placebo group withdrew from the study, but there were no significant adverse events in the PTHrP group. PTHrP administered sc in high doses for only 3 months appears to be a potent anabolic agent, producing a 4.7% increase in lumbar spine BMD. This compares very favorably to available antiresorptive drugs for osteoporosis and is similar to the increases in BMD at this early time point reported for PTH. Despite the high doses, PTHrP was well tolerated. Larger clinical trials are required to confirm these results and fully assess the anabolic potential of PTHrP in osteoporosis.
Introduction: PTH and PTH-related protein (PTHrP) cause primary hyperparathyroidism (HPT) and humoral hypercalcemia of malignancy (HHM), respectively. Whereas HHM and HPT resemble one another in many respects, osteoblastic bone formation and plasma 1,25(OH) 2 vitamin D are increased in HPT but reduced in HHM. Materials and Methods:We performed 2-to 4-day continuous infusions of escalating doses of PTH and PTHrP in 61 healthy young adults, comparing the effects on serum calcium and phosphorus, renal calcium and phosphorus handling, 1,25(OH) 2 vitamin D, endogenous PTH(1-84) concentrations, and plasma IGF-1 and markers of bone turnover. Results: PTH and PTHrP induced comparable effects on renal calcium and phosphorus handling, and both stimulated IGF-1 and bone resorption similarly. Surprisingly, PTH was consistently more calcemic, reflecting a selectively greater increase in renal 1,25(OH) 2 vitamin D production by PTH. Equally surprisingly, continuous infusion of both peptides markedly, continuously, and equivalently suppressed bone formation. Conclusions: PTHrP and PTH produce markedly different effects on 1,25(OH) 2 vitamin D homeostasis in humans, leading to different calcemic responses. Moreover, both peptides produce profound suppression of bone formation over multiple days, contrasting with events in HPT, but mimicking HHM. These findings underscore the facts that the mechanisms underlying the anabolic skeletal response to PTH and PTHrP in humans is poorly understood, as are the signal transduction mechanisms that link the renal PTH receptor to 1,25(OH) 2 vitamin D synthesis. These studies emphasize that much remains to be learned regarding the normal regulation of vitamin D metabolism and bone formation in response to PTH and PTHrP in humans.
The role of circulating IGF-I in skeletal acquisition and the anabolic response to PTH is not well understood. We generated IGF-I-deficient mice by gene deletions of IGF ternary complex components including: (1) liver-specific deletion of the IGF-I gene (LID), (2) global deletion of the acid-labile (ALS) gene (ALSKO), and (3) both liver IGF-I and ALS inactivated genes (LA). Twelve-week-old male control (CTL), LID, ALSKO, and LA mice were treated with vehicle (VEH) or human PTH(1-34) for 4 weeks. VEH-treated IGF-I-deficient mice (i.e. LID, ALSKO and LA mice) exhibited reduced cortical crosssectional area (P=0·001) compared with CTL mice; in contrast, femoral trabecular bone volume fractions (BV/TV) of the IGF-I-deficient mice were consistently greater than CTL (P<0·01). ALSKO mice exhibited markedly reduced osteoblast number and surface (P<0·05), as well as mineral apposition rate compared with other IGF-I-deficient and CTL mice. Adherent bone marrow stromal cells, cultured in -glycerol phosphate and ascorbic acid, showed no strain differences in secreted IGF-I. In response to PTH, there were both compartment-and strain-specific effects. Cortical bone area was increased by PTH in CTL and ALSKO mice, but not in LID or LA mice. In the trabecular compartment, PTH increased femoral and vertebral BV/TV in LID, but not in ALSKO or LA mice. In conclusion, we demonstrated that the presentation of IGF-I as a circulating complex is essential for skeletal remodeling and the anabolic response to PTH. We postulate that the ternary complex itself, rather than IGF-I alone, influences bone acquisition in a compartment-specific manner (i.e. cortical vs trabecular bone).
Loss of bone is a significant problem after renal transplant. Although bone loss in the first post transplant year has been well documented, conflicting data exist concerning bone loss after this time. It is equally unclear whether bone loss in long-term renal transplant recipients correlates with bone turnover as it does in postmenapausal osteoporosis. To examine these issues, we conducted a cross-sectional study to define the prevalence of osteoporosis in long-term (> 1 year) renal transplant recipients with preserved renal function (mean creatinine clearance 73 +/- 23 ml/min). Bone mineral density (BMD) was measured at the hip, spine and wrist by DEXA in 69 patients. Markers for bone formation (serum osteocalcin) and bone resorption [urinary levels of pyridinoline (PYD) and deoxypyridinoline (DPD)] were also measured as well as parameters of calcium metabolism. Correlations were made between these parameters and BMD at the various sites. The mean age of the patients was 45 +/- 11 years. Eighty eight percent of patients were on cyclosporine (12% on tacrolimus) and all but 2 were on prednisone [mean dose 9 +/- 2 mg/day)]. Osteoporosis (BMD more than 2.5 SD below peak adult BMD) at the spine or hip was diagnosed in 44% of patients and osteopenia was present in an additional 44%. Elevated levels of intact parathyroid hormone (i PTH) were observed in 81% of patients. Elevated urinary levels of PYD or DPD were present in 73% of patients and 38% had elevated serum levels of osteocalcin. Levels of calcium, and of 25(OH) and 1,25(OH)2 vitamin D were normal. In a stepwise multiple regression model that included osteocalcin, PYD, DPD, intact PTH, age, years posttransplant, duration of dialysis, cumulative prednisone dose, smoking, and diabetes: urinary PYD was the strongest predictor of bone mass. These results demonstrate that osteoporosis is common in long-term renal transplant recipients. The data also suggest that elevated rates of bone resorption contribute importantly to this process.
The effects of continuous administration of supraphysiologic doses of dexamethasone (DEX) on bone metabolism were examined in rats. Adult, male, Sprague Dawley rats were infused with DEX at a constant rate of 16.25 microg/day for 19 days. Despite soft tissue catabolism, DEX treatment led to a significant increase in bone volume in all experiments. This was accompanied by a significant gain in femoral weight and calcium content. These findings were also observed in DEX-treated parathyroidectomized animals indicating that intact parathyroid function was not required for this effect. DEX treatment did not affect mean levels of serum calcium or phosphorus but led to significant declines in circulating levels of PTH and 1,25(OH)2D and in the urinary calcium/creatinine ratio. This latter finding was also observed in PTX animals in which 1,25(OH)2D levels did not change. Serum concentrations of osteocalcin and tartrate-resistant acid phosphatase both declined in a time-dependent manner with DEX treatment suggesting a slowing of bone turnover with the net effect favoring formation. However, histomorphometric findings were variable. Two of three experiments demonstrated a decrease in cellular parameters of formation and resorption and in one experiment, these indices increased. Mineralized surface increased with DEX treatment. We conclude that, in marked contrast to the findings in man and certain other species, DEX treatment increases bone mass in rats. This may in part relate to a relatively greater suppression of resorption vis à vis formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.