Summary To clarify the organization of motor representations in posterior parietal cortex, we test how three motor variables (body side, body part, cognitive strategy) are coded in the human anterior intraparietal cortex. All tested movements were encoded, arguing against strict anatomical segregation of effectors. Single units coded for diverse conjunctions of variables, with different dimensions anatomically overlapping. Consistent with recent studies, neurons encoding body parts exhibited mixed selectivity. This mixed selectivity resulted in largely orthogonal coding of body parts, which “functionally segregate” the effector responses despite the high degree of anatomical overlap. Body side and strategy were not coded in a mixed manner as effector determined their organization. Mixed-coding of some variables over others, what we term “partially mixed coding”, argues that the type of functional encoding depends on the compared dimensions. This structure is advantageous for neuroprosthetics, allowing a single array to decode movements of a large extent of the body.
High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic responses across views. Action verbs elicited selective responses from a fraction of these invariant and idiosyncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory representations related to the corresponding action concept. Controls indicated that the results are not the product of visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated visual experience of the reader.
Recent studies in posterior parietal cortex (PPC) have found multiple effectors and cognitive strategies represented within a shared neural substrate in a structure termed "partially mixed selectivity" (Zhang et al., 2017). In this study, we examine whether the structure of these representations is preserved across changes in task context and is thus a robust and generalizable property of the neural population. Specifically, we test whether the structure is conserved from an open-loop motor imagery task (training) to a closed-loop cortical control task (online), a change that has led to substantial changes in neural behavior in prior studies in motor cortex. Recording from a 4 ϫ 4 mm electrode array implanted in PPC of a human tetraplegic patient participating in a brain-machine interface (BMI) clinical trial, we studied the representations of imagined/attempted movements of the left/right hand and compare their individual BMI control performance using a one-dimensional cursor control task. We found that the structure of the representations is largely maintained between training and online control. Our results demonstrate for the first time that the structure observed in the context of an open-loop motor imagery task is maintained and accessible in the context of closed-loop BMI control. These results indicate that it is possible to decode the mixed variables found from a small patch of cortex in PPC and use them individually for BMI control. Furthermore, they show that the structure of the mixed representations is maintained and robust across changes in task context.
Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals' motor cortex, which has previously been shown to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.