In 2010, Richard Heck, Ei-ichi Negishi, and Akira Suzuki joined the prestigious circle of Nobel Laureate chemists for their roles in discovering and developing highly practical methodologies for C-C bond construction. From their original contributions in the early 1970s the landscape of the strategies and methods of organic synthesis irreversibly changed for the modern chemist, both in academia and in industry. In this Review, we attempt to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today.
Strategies for the development of Pd catalysts based
on utilization
of L2Pd and LPd species, beyond the contributions of the
2010 Nobel Laureates Richard Heck, Ei-ichi Negishi, and Akira Suzuki,
along with their contemporaries, are reviewed. These well-defined,
preformed Pd catalysts improve the selectivity and activity of selected
cross-coupling reactions by reducing the metal loading and the ligand-to-metal
ratios. This review describes predominantly the development of Pd
precatalysts over the last 10 years and highlights the benefits often
observed when using well-defined preformed catalysts relative to those
generated in situ.
The air-stable complex Pd(η(3)-allyl)(DTBNpP)Cl (DTBNpP = di(tert-butyl)neopentylphosphine) serves as a highly efficient precatalyst for the arylation of amines and enolates using aryl bromides and chlorides under mild conditions with yields ranging from 74% to 98%. Amination reactions of aryl bromides were carried out using 1-2 mol % Pd(η(3)-allyl)(DTBNpP)Cl at 23-50 °C without the need to exclude oxygen or moisture. The C-N coupling of the aryl chlorides occurred at relatively lower temperature (80-100 °C) and catalyst loading (1 mol %) using the Pd(η(3)-allyl)(DTBNpP)Cl precatalyst than the catalyst generated in situ from DTBNpP and Pd(2)(dba)(3) (100-140 °C, 2-5 mol % Pd). Other Pd(DTBNpP)(2)-based complexes, (Pd(DTBNpP)(2) and Pd(DTBNpP)(2)Cl(2)) were ineffective precatalysts under identical conditions for the amination reactions. Both Pd(DTBNpP)(2) and Pd(DTBNpP)(2)Cl(2) precatalysts gave nearly quantitative conversions to the product in the α-arylation of propiophenone with p-chlorotoluene and p-bromoanisole at a substrate/catalyst loading of 100/1. At lower substrate/catalyst loading (1000/1), the conversions were lower but comparable to that of Pd(t-Bu(3)P)(2). In many cases, the tri-tert-butylphosphine (TTBP) based Pd(I) dimer, [Pd(μ-Br)(TTBP)](2), stood out to be the most reactive catalyst under identical conditions for the enolate arylation. Interestingly, the air-stable Pd(I) dimer, Pd(2)(DTBNpP)(2)(μ-Cl)(μ-allyl), was less active in comparison to [Pd(μ-Br)(TTBP)](2) and Pd(η(3)-allyl)(DTBNpP)Cl. The X-ray crystal structures of Pd(η(3)-allyl)(DTBNpP)Cl, Pd(DTBNpP)(2)Cl(2), Pd(DTBNpP)(2), and Pd(2)(DTBNpP)(2)(μ-Cl)(μ-allyl) are reported in this paper along with initial studies on the catalyst activation of the Pd(η(3)-allyl)(DTBNpP)Cl precatalyst.
A series of Pd(R-allyl)LCl complexes [R = H, 1-Me, 1-Ph, 1-gem-Me(2), 2-Me; L = Q-Phos, P(t-Bu)(3), P(t-Bu)(2)(p-NMe(2)C(6)H(4)), P(t-Bu)(2)Np] have been synthesized and evaluated in the Buchwald-Hartwig aminations in detail, in addition to the preliminary studies on Suzuki coupling and α-arylation reactions. Pd(crotyl)Q-PhosCl (9) was found to be a superior catalyst to the other Q-Phos-based catalysts, and the reported in situ systems, in model coupling reactions involving 4-bromoanisole substrate with either N-methylaniline or 4-tert-butylbenzeneboronic acid. Precatalyst 9 also performed better than the catalysts bearing P(t-Bu)(2)(p-NMe(2)C(6)H(4)) ligand; however, it is comparable to the new crotyl catalysts bearing P(t-Bu)(3) or P(t-Bu)(2)Np ligands. In α-arylation of a biologically important model substrate, 1-tetralone, Pd(allyl)P(t-Bu)(2)(p-NMe(2)C(6)H(4))Cl (15) was found to be the best catalyst. The reason for the relatively higher activity of the crotyl complexes in comparison to the allyl derivatives in C-N bond formation reactions was investigated using X-ray crystallography in conjunction with NMR spectroscopic studies.
The reduction of Pd(II) intermediates to Pd(0) is a key elementary step in a vast number of Pd-catalyzed processes, ranging from cross-coupling, C-H activation, to Wacker chemistry. For one of the most powerful new generation phosphine ligands, PtBu, oxidation state Pd(I), and not Pd(0), is generated upon reduction from Pd(II). The mechanism of the reduction of Pd(II) to Pd(I) has been investigated by means of experimental and computational studies for the formation of the highly active precatalyst {Pd(μ-Br)(PtBu)}. The formation of dinuclear Pd(I), as opposed to the Pd(0) complex, (tBuP)Pd was shown to depend on the stoichiometry of Pd to phosphine ligand, the order of addition of the reagents, and, most importantly, the nature of the palladium precursor and the choice of the phosphine ligand utilized. In addition, through experiments on gram scale in palladium, mechanistically important additional Pd- and phosphine-containing species were detected. An ionic Pd(II)Br dimer side product was isolated, characterized, and identified as the crucial driving force in the mechanism of formation of the Pd(I) bromide dimer. The potential impact of the presence of these side species for in situ formed Pd complexes in catalysis was investigated in Buchwald-Hartwig, α-arylation, and Suzuki-Miyaura reactions. The use of preformed and isolated Pd(I) bromide dimer as a precatalyst provided superior results, in terms of catalytic activity, in comparison to catalysts generated in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.