In a circular economy concept, where more than 300 million tons of mining and quarrying wastes are produced annually, those are valuable resources, supplying metals that are extracted today by other processes, if innovative methods and processes for efficient extraction of these elements are applied. This work aims to assess microbiological and chemical spatial distribution within two tailing basins from a tungsten mine, using a MiSeq approach targeting the 16S rRNA gene, to relate microbial composition and function with chemical variability, thus, providing information to enhance the efficiency of the exploitation of these secondary sources. The tailings sediments core microbiome comprised members of family Anaerolineacea and genera Acinetobacter, Bacillus, Cellulomonas, Pseudomonas, Streptococcus and Rothia, despite marked differences in tailings physicochemical properties. The higher contents of Al and K shaped the community of Basin 1, while As-S-Fe contents were correlated with the microbiome composition of Basin 2. The predicted metabolic functions of the microbiome were rich in genes related to metabolism pathways and environmental information processing pathways. An in-depth understanding of the tailings microbiome and its metabolic capabilities can provide a direction for the management of tailings disposal sites and maximize their potential as secondary resources.
Bioleaching is an actual economical alternative to treat residues, which allows, depending on the chosen strategy, two possible outcomes: (1) a leachate enriched with target metals, or (2) a residue enriched in target metals through the leaching of interfering components (IC). This work aimed to study the metals released by bioprocessing the Panasqueira mine tailings, as a strategy to increase critical metals' relative concentration in residues. Biostimulation of the local microbiota was compared to a bioaugmentation approach using the autochthonous Diaphorobacter polyhydroxybutyrativorans strain B2A2W2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was selected to study the metals released in the leachate through multi-element external standards. A new data treatment method was developed to use a preliminary sweep of intensities to quantify the non-initial target metals concentration in the leachate, based on preliminary ICP-MS intensity measurements. The results demonstrated that biostimulation was an efficient bioleaching strategy for the IC silicon, aluminium, magnesium, selenium, manganese, zinc, iron, and copper, by decreasing concentration, resulting in a relative increase in the gallium and yttrium (10x) levels in the treated residue. The strategy followed to quantify a large number of elements with ICP-MS using a reduced number of data points for calibration proved valid and speeded up the analytical process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.