SUMMARYAnimal losses due to abortion and malformed offspring during the lambing period 2011/2012 amounted to 50% in ruminants in Europe. A new arthropod-borne virus, called Schmallenberg virus (SBV), was identified as the cause of these losses. Blood samples were obtained from 40 goat flocks and tested for antibodies against SBV by ELISA, with 95% being seropositive. The calculated intra-herd seroprevalence (median 36·7%, min-max 0–93·3%) was smaller than in cattle or sheep flocks. Only 25% of the farmers reported malformations in kids. Statistical analysis revealed a significantly lower risk of goats housed indoors all year-round to be infected by SBV than for goats kept outside day and night. The low intra-herd seroprevalence demonstrates that German goat flocks are still at risk of SBV infection. Therefore, they must be protected during the next lambing seasons by rescheduling the mating period, implementing indoor housing, and continuous treatment with repellents or vaccination.
The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds.
Alpacas kept in Central Europe are often deficient in vitamin D3, which is supplemented orally or by injection by the owners or veterinarians. Vitamin D3 can be specified in two different units (IU and µg), which differ by a factor of 40. By mixing up these units, an overdosage can be induced. In this study, three alpaca crias were examined after vitamin D3 intoxication, with particular reference to kidney function. All three animals developed non-specific clinical alterations 1–2 weeks after a vitamin D3 overdose of approximately 40 times. Plasma of the animals revealed several alterations. The main findings were severe azotemia, hypercalcemia and hyperphosphatemia, 15 days after treatment. Kidney function analysis (endogenous creatinine clearance) in two of the crias revealed severe glomerular damage. All crias died despite intensive treatment within 23 days after vitamin D3 treatment. Necropsy revealed calcification in different organs, mainly the kidneys, lungs and liver. Since nine other crias in the same group were treated with comparable doses of vitamin D3 and no clinical signs were observed in these animals, it is concluded that individual animals show different levels of sensitivity to vitamin D3.
Schmallenberg virus (SBV) infections can cause congenital musculoskeletal and vertebral malformations as well as neurological failures in foetuses of several ruminant species if susceptible mother animals were infected during early gestation. Blood samples gained from 17 goat and 64 sheep flocks in Lower Saxony (LS), Germany (January-May 2012), which is located in the core region of the 2011/2012 epidemic were tested for antibodies against SBV by ELISA to detect past exposure to SBV. A SBV-specific questionnaire was raised in all flocks. The calculated median within-herd prevalence was 43.8% (min-max: 5.6-93.3%) for goats and 58.7% (min-max: 6.5-100%) for sheep, showing that small ruminants in LS, especially goats, are still at risk of novel SBV infections in the following lambing seasons as not all animals have seroconverted yet. Statistical analysis revealed that goats have a significantly lower risk of SBV infections than sheep which might be explained by different host preferences of Culicoides ssp. as main vectors for SBV and different housing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.