As an opportunistic pathogen of humans and animals, <i>Staphylococcus aureus</i> asymptomatically colonizes the nasal cavity but is also a leading cause of life-threatening acute and chronic infections. The evolution of <i>S. aureus</i> resulting from short- and long-term adaptation to diverse hosts is tightly associated with mobile genetic elements<i>. S. aureus</i> strains can carry up to four temperate phages, many of which possess accessory genes encoding staphylococcal virulence factors. More than 90% of human nasal isolates of <i>S. aureus</i> have been shown to carry Sa3int phages, whereas invasive <i>S. aureus</i> isolates tend to lose these phages. Sa3int phages integrate as prophages into the bacterial <i>hlb</i> gene, disrupting the expression of the sphingomyelinase Hlb, an important virulence factor under specific infection conditions. Virulence factors encoded by genes carried by Sa3int phages include staphylokinase, enterotoxins, chemotaxis-inhibitory protein, and staphylococcal complement inhibitor, all of which are highly human specific and probably essential for bacterial survival in the human host. The transmission of <i>S. aureus</i> from humans to animals is strongly correlated with the loss of Sa3int phages, whereas phages are regained once a strain is transmitted from animals to humans. Thus, both the insertion and excision of prophages may confer a fitness advantage to this bacterium<i>.</i> There is also growing evidence that Sa3int phages may perform “active lysogeny,” a process during which prophages are temporally excised from the chromosome without forming intact phage particles. The molecular mechanisms controlling the peculiar life cycle of Sa3int phages remain largely unclear. Nevertheless, their regulation is likely fine-tuned to ensure bacterial survival within different hosts.
Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.
Background: The cell envelope ofStaphylococcus aureuscontains two major secondary cell wall glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Both the CP and the WTA are attached to the cell wall and play distinct roles inS. aureuscolonization, pathogenesis, and bacterial evasion of host immune defenses. Objective: We aimed to investigate whether CP interferes with WTA-mediated properties. Methods: Strains with natural heterogeneous expression of CP, strains with homogeneous high CP expression and CP-deficient strains were compared to WTA deficient controls regarding WTA dependent phage binding, cell adhesion, IgG deposition, and virulencein vivo. Results: WTA-mediated phage adsorption, specific antibody deposition and cell adhesion were negatively correlated with CP expression. WTA, but not CP, enhanced the bacterial burden in a mouse abscess model, while CP overexpression resulted in intermediate virulencein vivo. Conclusions: CP protects the bacteria from WTA-dependent opsonization and phage binding. This protection comes at the cost of diminished adhesion to host cells. The highly complex regulation and mostly heterogeneous expression of CP has probably evolved to ensure the survival and optimal physiological adaptation of the bacterial population as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.