The purpose of this study was to assess the microtensile bond strength of a self-etching adhesive system to enamel and dentin prepared by Er:YAG laser irradiation or air abrasion, as well as to evaluate the adhesive interfaces by scanning electron microscopy (SEM). For microtensile bond strength test, 80 third molars were randomly assigned to five groups: Group I, carbide bur, control (CB); II, air abrasion with standard tip (ST); III, air abrasion with supersonic tip (SP); IV, Er:YAG laser 250 mJ/4 Hz (L250); V, Er:YAG laser 300 mJ/4 Hz (L300). Each group was divided into two subgroups (n = 8) (enamel, E and dentin, D). E and D surfaces were treated with the self-etching system Adper Prompt L-Pop and composite buildups were done with Filtek Z-250. Sticks with a cross-sectional area of 0.8 mm(2) (+/-0.2 mm(2)) were obtained and the bond strength tests were performed. Data were submitted to ANOVA and Tukey's test. For morphological analysis, disks of 30 third molars were restored, sectioned and prepared for SEM. Dentin presented the highest values of adhesion, differing from enamel. Laser and air-abrasion preparations were similar to enamel. Dentin air-abrasion with standard tip group showed higher bond strength results than Er:YAG-laser groups, however, air-abrasion and Er:YAG laser groups were similar to control group. SEM micrographs revealed that, for both enamel and dentin, the air-abrasion and laser preparations presented irregular adhesive interfaces, different from the ones prepared by rotary instrument. It was concluded that cavity preparations accomplished by both Er:YAG laser energies and air abrasion tips did not positively influence the adhesion to enamel and dentin.
Objectives:This study evaluated the effectiveness of different home bleaching agents on color alteration and their influence on surface and subsurface microhardness of discolored bovine enamel.Material and Methods:Forty-five fragments of bovine incisors were randomly allocated into 3 groups (n=15) according to the bleaching agent: 10% carbamide peroxide gel (CP10), 16% carbamide peroxide gel (CP16) and 6.5%-hydrogen-peroxide-based strip (HP6.5). Before bleaching treatment, initial values of Knoop surface microhardness and color (CIEL*a*b*) were obtained and the fragments were artificially stained in hemolyzed rat blood. Then, bleaching treatments were performed over a 21-day period. Color changes (ΔE) were assessed at 7, 14 and 21 days, and final surface microhardness reading was done after 21 days. Thereafter, the fragments were bisected to obtain subsurface microhardness. Data were subjected to ANOVA and Tukey's tests (α=5%).Results:Color changes produced by CP16 were similar to those of CP10, and the color changes produced by these materials were significantly superior to those produced by HP6.5. Color changes at 21 days were superior to 7 days and similar to 14 days. The time did not influence color changes for CP16, which showed similarity between the 14- and 21-day results. No statistically significant differences were found among the home bleaching agents for surface and subsurface microhardness.Conclusions:Microhardness of bovine enamel was not affected by the bleaching agents. The 16% carbamide peroxide gel was the most effective for bleaching the stained substrate.
Zirconia (ZrO2) is a bioinert, strong, and tough ceramic, while titania (TiO2) is bioactive but has poor mechanical properties. It is expected that ZrO2-TiO2 mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO2-TiO2 mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO2, ZrO2, and three different ZrO2-TiO2 mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey's test. All samples presented high densities and similar microstructure. The H2O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO2-TiO2 samples was similar and significantly higher than those of TiO2 and ZrO2 samples. Our in vitro experiments showed that the ZrO2-TiO2 sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO2 content. Thus, the ZrO2-TiO2 sintered ceramics could be considered as potential implant material.
An analysis was carried out to observe whether the application or not of a composite surface sealant (CSS), as well the moment for CSS application were able to reduce marginal microleakage in compactable composite resin restoration. All the preparations were restored with a compactable composite resin. The restored teeth were randomly assessed. G1 (control group): finished and polished; G2: finished, polished, etched and cover with CSS; G3: immediately after the restoration done the CSS was applied, then finished and polished; G4: CSS applied immediately after the restoration was done, the finished and polished, etched, and covered with CSS. The specimens were isolated with nail polish, thermocycled, immersed in aqueous solution of silver nitrate, and followed in a photo developing solution. The microleakage scores obtained from the occlusal and cervical walls were analyzed with the Kruskall-Wallis nonparametric test. No microleakage was found at the enamel margins. Comparing the microleakage scores at dentin/cementum margins (p < 0.05) it was found that G3 (p = 0.0162) and G4 (p = 0.0187) were able to reduce microleakage when compared with group G2. However the results were not statistically different from the control group. The application of CSS was not able to completely eliminate marginal microleakage at the dentin/cementum margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.