The aim of this study was to investigate photosynthetic differences between the marine, Norwegian Sea ecotype and the brackish, Bothnian Sea ecotype of F. vesiculosus and F. radicans and to see whether photosynthetic differences could be connected with the relative amounts of D1 protein (PSII), PsaA (PSI) protein and/or Rubisco. For this purpose, we tested if a higher photosynthetic maximum (P max ) in the Atlantic Ocean ecotype of F. vesiculosus relative to the Baltic Sea ecotype, and an increase of the P max in Baltic Sea ecotype of F. vesiculosus at higher salinity, could be due to an increase in the relative amounts of Rubisco. The proteins have been evaluated on a relative basis. Immunoblot signals showed that the amount of Rubisco was higher in both ecotypes of F. vesiculosus than in F. radicans, but no differences could be detected between the two ecotypes of F. vesiculosus. The results suggest an uneven photosystem protein stoichiometry in Fucus, with more of the PSI protein PsaA relative to the PSII protein D1. The difference in P max between the two ecotypes of F. vesiculosus might be related to the difficulties for the algae to adapt to the environment in Bothnian Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.