We show here that mouse interferon-alpha (IFN-alpha)-producing cells (mIPCs) are a unique subset of immature antigen-presenting cells (APCs) that secrete IFN-alpha upon stimulation with viruses. mIPCs have a plasmacytoid morphology, can be stained with an antibody to Ly6G and Ly6C (anti-Ly6G/C) and are Ly6C+B220+CD11cloCD4+; unlike other dendritic cell subsets, however, they do not express CD8alpha or CD11b. Although mIPCs undergo apoptosis in vitro, stimulation with viruses, IFN-alpha or CpG oligonucleotides enhanced their survival and T cell stimulatory activity. In vivo, mIPCs were the main producers of IFN-alpha in cytomegalovirus-infected mice, as depletion of Ly6G+/C+ cells abrogated IFN-alpha production. mIPCs produced interleukin 12 (IL-12) in response to viruses and CpG oligodeoxynucleotides, but not bacterial products. Although different pathogens can selectively engage various APC subsets for IL-12 production, IFN-alpha production is restricted to mIPCs' response to viral infection.
Distinct dendritic cell (DC) subsets have been suggested to be preprogrammed to direct either T helper cell (Th) type 1 or Th2 development, although more recently different pathogen products or stimuli have been shown to render these DCs more flexible. It is still unclear how distinct mouse DC subsets cultured from bone marrow precursors, blood, or their lymphoid tissue counterparts direct Th differentiation. We show that mouse myeloid and plasmacytoid precursor DCs (pDCs) cultured from bone marrow precursors and ex vivo splenic DC subsets can induce the development of both Th1 and Th2 effector cells depending on the dose of antigen. In general, high antigen doses induced Th1 cell development whereas low antigen doses induced Th2 cell development. Both cultured and ex vivo splenic plasmacytoid-derived DCs enhanced CD4+ T cell proliferation and induced strong Th1 cell development when activated with the Toll-like receptor (TLR)9 ligand CpG, and not with the TLR4 ligand lipopolysaccharide (LPS). The responsiveness of plasmacytoid pDCs to CpG correlated with high TLR9 expression similarly to human plasmacytoid pDCs. Conversely, myeloid DCs generated with granulocyte/macrophage colony-stimulating factor enhanced Th1 cell development when stimulated with LPS as a result of their high level of TLR4 expression. Polarized Th1 responses resulting from high antigen dose were not additionally enhanced by stimulation of DCs by TLR ligands. Thus, the net effect of antigen dose, the state of maturation of the DCs together with the stimulation of DCs by pathogen-derived products, will determine whether a Th1 or Th2 response develops.
Differential expression of Toll-like receptor (TLR) by conventional dendritic cells (cDCs) and plasmacytoid DC (pDCs) has been suggested to influence the type of immune response induced by microbial pathogens. In this study we show that, in vivo, cDCs and pDCs are equally activated by TLR4, -7, and -9 ligands. Type I interferon (IFN) was important for pDC activation in vivo in response to all three TLR ligands, whereas cDCs required type I IFN signaling only for TLR9- and partially for TLR7-mediated activation. Although TLR ligands induced in situ migration of spleen cDC into the T cell area, spleen pDCs formed clusters in the marginal zone and in the outer T cell area 6 h after injection of TLR9 and TLR7 ligands, respectively. In vivo treatment with TLR9 ligands decreased pDC ability to migrate ex vivo in response to IFN-induced CXCR3 ligands and increased their response to CCR7 ligands. Unlike cDCs, the migration pattern of pDCs required type I IFN for induction of CXCR3 ligands and responsiveness to CCR7 ligands. These data demonstrate that mouse pDCs differ from cDCs in the in vivo response to TLR ligands, in terms of pattern and type I IFN requirement for activation and migration.
We report in this study the generation of a novel rat mAb that recognizes mouse plasmacytoid dendritic cells (pDC). This Ab, named 120G8, stains a small subset of CD11clow spleen cell with high specificity. This population produces high amounts of IFN-α upon in vitro viral stimulation. Both ex vivo- and in vitro-derived 120G8+ cells display a phenotype identical with that of the previously described mouse pDC (B220highLy6ChighGr1lowCD11b−CD11clow). Mice treated with 120G8 mAb are depleted of B220highLy6ChighCD11clow cells and have a much-reduced ability to produce IFN-α in response to in vivo CpG stimulation. The mAb 120G8 stains all and only B220highLy6ChighCD11clow pDC in all lymphoid organs. Immunohistochemical studies performed with this mAb indicate that pDC are located in the T cell area of spleen, lymph nodes, and Peyer’s patches. Although the Ag recognized by 120G8 is not yet known, we show that its expression is up-regulated by type I IFN on B cells and DC. Using this mAb in immunofluorescence studies demonstrates strain- and organ-specific differences in the frequency of pDC and other DC subsets. 129Sv mice have a much higher frequency of pDC, together with a lower frequency of conventional CD8α+CD11chigh DC, compared with C57BL/6 mice, both in spleen and blood. The higher ability of 129Sv mice to produce IFN-α in vivo is related to a higher number of pDC, but also to a higher ability of pDC from 129Sv mice to produce IFN-α in vitro in response to viral stimulation.
SUMMARY Oral tolerance prevents oral sensitization to dietary antigens (Ags), including proteins and haptens, and development of delayed-type hypersensitivity (DTH) responses. We showed here that plasmacytoid dendritic cells (pDCs) prevented oral T cell priming and were responsible for systemic tolerance to CD4+ and CD8+ T cell-mediated DTH responses induced by Ag feeding. Systemic depletion of pDCs prevented induction of tolerance by antigen feeding. Transfer of oral Ag-loaded liver pDCs to naive recipient mice induced Ag-specific suppression of CD4+ and CD8+ T cell responses to protein and hapten, respectively. Liver is a site of oral Ag presentation, and pDCs appeared to induce anergy or deletion of Ag-specific T cells in the liver relatively rapidly via a CD4+ T cell-independent mechanism. These data demonstrate that oral tolerance relies on Ag presentation by pDC to T cells and suggest that pDC could represent a key therapeutic target for intestinal and systemic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.