In [9], R. Doney identifies a striking factorization of the arc-sine law in terms of the suprema of two independent stable processes of the same index by an elegant random walks approximation. In this paper, we provide an alternative proof and a generalization of this factorization based on the theory recently developed for the exponential functional of Lévy processes. As a by-product, we provide some interesting distributional properties for these variables and also some new examples of the factorization of the arc-sine law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.