Lung inflammatory diseases, such as acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis, represent a major health problem worldwide. Although glucocorticoids are the most potent anti-inflammatory drug in asthma, they exhibit major side effects and have poor activity in lung inflammatory disorders such as ALI or COPD. Therefore, there is growing need for the development of alternative or new therapies to treat inflammation in the lung. Peroxisome proliferator-activated receptors (PPARs), including the three isotypes PPARalpha, PPARbeta (or PPARdelta) and PPARgamma, are transcription factors belonging to the nuclear hormone receptor superfamily. PPARs, and in particular PPARalpha and PPARgamma, are well known for their critical role in the regulation of energy homeostasis by controlling expression of a variety of genes involved in lipid and carbohydrate metabolism. Synthetic ligands of the two receptor isotypes, the fibrates and the thiazolidinediones, are clinically used to treat dyslipidaemia and type 2 diabetes, respectively. Recently however, PPARalpha and PPARgamma have been shown to exert a potent anti-inflammatory activity, mainly through their ability to downregulate pro-inflammatory gene expression and inflammatory cell functions. The present article reviews the current knowledge of the role of PPARalpha and PPARgamma in controlling inflammation, and presents different findings suggesting that PPARalpha and PPARgamma activators may be helpful in the treatment of lung inflammatory diseases.
Background: Inflammation is a hallmark of acute lung injury and chronic airway diseases. In chronic airway diseases, it is associated with profound tissue remodeling. Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor, that belongs to the nuclear receptor family. Agonists for PPARα have been recently shown to reduce lipopolysaccharide (LPS)-and cytokine-induced secretion of matrix metalloproteinase-9 (MMP-9) in human monocytes and rat mesangial cells, suggesting that PPARα may play a beneficial role in inflammation and tissue remodeling.
Our data clearly demonstrate that exposure to LPS influences allergen-induced IgE production and airway eosinophilia in a time and dose-dependent manner, preventing IgE production and development of eosinophilia when administered during allergen sensitization at high doses, and inducing exacerbation of eosinophilia when administered upon allergen challenge at low doses, including infra-clinical doses.
Nutrition and lifestyle, particularly over-nutrition and lack of exercise, promote the progression and pathogenesis of obesity and metabolic diseases. Nutrition is likely the most important environmental factor that modulates the expression of genes involved in metabolic pathways and a variety of phenotypes associated with obesity and diabetes. During pregnancy, diet is a major factor that influences the organ developmental plasticity of the foetus. Experimental evidence shows that nutritional factors, including energy, fatty acids, protein, micronutrients, and folate, affect various aspects of metabolic programming. Different epigenetic mechanisms that are elicited by bioactive factors in early critical developmental ages affect the susceptibility to several diseases in adulthood. The beneficial effects promoted by exercise training are well recognised, and physical exercise may be considered one of the more prominent non-pharmacological tools that can be used to attenuate metabolic programming and to consequently ameliorate the illness provoked by metabolic diseases and reduce the prevalence of obesity, type 2 diabetes, and cardiovascular diseases. Literature on the different outcomes of unbalanced diets and the beneficial effects of some bioactive molecules during gestation and lactation on the metabolic health of offspring, as well as the potential mechanisms underlying these effects, was reviewed. The importance of the combined effects of functional nutrition and exercise as reprogramming tools of metabolic programming is discussed in depth. Finally, this review provides recommendations to healthcare providers that may aid in the control of early programming in an attempt to optimise the health of the mother and child.
Background: We have shown previously that lipopolysaccharides (LPS) inhibited airway inflammation in allergen-sensitized and challenged mice when administered during sensitization, while exacerbating the inflammation when given upon challenge. We have here investigated the effect of LPS administered during both sensitization and challenge on airway inflammation, as well as on the profile of the T-helper (Th) response to allergen. Methods: Mice were sensitized and challenged with ovalbumin (OVA), in the presence or absence of effective doses of LPS, namely 1 µg during sensitization and 1 ng during challenge. Inflammation was assessed by measuring cell counts and cytokine levels in bronchoalveolar lavage fluid (BALF). The profile of the Th response was determined by quantifying OVA-specific IgE and IgG2a in serum and Th1/Th2 cytokines in the culture medium of splenocytes and in BALF. Results: Allergen-induced airway eosinophilia was increased in mice exposed to LPS during challenge only when compared with controls, whereas it was similarly reduced in animals exposed during sensitization only and during both sensitization and challenge. Mice exposed to LPS during sensitization only or during both sensitization and challenge also displayed a decrease in IgE and an increase in IgG2a, suggesting a switch in the immune response toward the Th1 profile. This was confirmed by quantification of Th1/Th2 cytokines in culture medium of splenocytes and in BALF. Conclusions: Our data demonstrate that exposure to endotoxins during sensitization prevents allergen-induced airway inflammation, as well as its exacerbation triggered by further exposure to endotoxins during challenge, while switching the immune response to allergen from a Th2 to a Th1 profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.