This paper describes and compares methods and analyzers used to measure hemoglobin (Hb) in clinical laboratories and field settings. We conducted a literature review for methods used to measure Hb in clinical laboratories and field settings. We described methods to measure Hb and factors influencing results. Automated hematology analyzer (AHA) was reference for all Hb comparisons using evaluation criteria of ±7% set by College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA). Capillary fingerprick blood usually produces higher Hb concentrations compared with venous blood. Individual drops produced lower concentrations than pooled capillary blood. Compared with the AHA: (1) overall cyanmethemoglobin (1.0–8.0 g/L), WHO Colour Scale (0.5–10.0 g/L), paper-based devices (5.0–7.0 g/L), HemoCue® Hb-201 (1.0–16.0 g/L) and Hb-301 (0.5–6.0 g/L), and Masimo Pronto® (0.3–14.0 g/L) overestimated concentrations; (2) Masimo Radical® −7 both under- and overestimated concentrations (0.3–104.0 g/L); and (3) other methods underestimated concentrations (2.0–16.0 g/L). Most mean concentration comparisons varied less than ±7% of the reference. Hb measurements are influenced by several analytical factors. With few exceptions, mean concentration bias was within ±7%, suggesting acceptable performance. Appropriate, high-quality methods in all settings are necessary to ensure the accuracy of Hb measurements.This paper describes and compares methods and analyzers used to measure hemoglobin (Hb) in clinical laboratories and field settings. With few exceptions, mean concentration bias was within ±7%, suggesting acceptable performance. Appropriate, high-quality methods in all settings are necessary to ensure the accuracy of Hb measurements.
Background In field studies, hemoglobin (Hb) is often measured using a battery-operated, portable HemoCue® hemoglobinometer. Methods We compared the performance of 2 HemoCue® models (Hb-201+ and Hb-301) and investigated effects of preanalytical factors on Hb results by simulating unfavorable field conditions. Results The Hb-301 produced 2.6% higher results compared to the Hb-201+. Hb had to be measured within 1 min of filling the Hb-301 cuvette to avoid artificially elevated concentrations (1.3% per min). The Hb-301 cuvettes withstood elevated temperature (37°C) and humidity (72%) for 3 wk, while the Hb-201+ cuvettes degraded within 10 min under those conditions. Both cuvette types withstood elevated temperature for 3 wk. Properly-collected venous and capillary blood produced comparable results. Pooled capillary blood produced comparable results to the second and third but not the fourth drop of blood (3.3% lower). Blood could be stored for ≤4 d at 10–30°C before Hb-201+ measurement, but only for 1 d at 10–23°C before Hb-301 measurement (≤1% change in Hb). Conclusions Higher Hb results obtained with the Hb-301 may influence the interpretation of anemia prevalence in health surveys. While the Hb-301 performed better in high humidity conditions, the Hb-201+ provided more user flexibility regarding delayed Hb reading.
In sub-Saharan Africa, inherited causes of anemia are common, but data are limited regarding the geographical prevalence and coinheritance of these conditions and their overall contributions to childhood anemia. To address these questions in Malawi, we performed a secondary analysis of the 2015-2016 Malawi Micronutrient Survey, a nationally and regionally representative survey that estimated the prevalence of micronutrient deficiencies and evaluated both inherited and noninherited determinants of anemia. Children age 6 to 59 months were sampled from 105 clusters within the 2015-2016 Malawi Demographic Health Survey. Hemoglobin, ferritin, retinol binding protein, malaria, and inflammatory biomarkers were measured from venous blood. Molecular studies were performed using dried blood spots to determine the presence of sickle cell disease or trait, α-thalassemia trait, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Of 1279 eligible children, 1071 were included in the final analysis. Anemia, iron deficiency, and malaria were common, affecting 30.9%, 21.5%, and 27.8% of the participating children, respectively. α-Thalassemia trait was common (>40% of children demonstrating deletion of 1 [33.1%] or 2 [10.0%] α-globin genes) and associated with higher prevalence of anemia (P < .001). Approximately 20% of males had G6PD deficiency, which was associated with a 1.0 g/dL protection in hemoglobin decline during malaria infection (P = .02). These data document that inherited blood disorders are common and likely play an important role in the prevalence of anemia and malaria in Malawian children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.