Boltzmann models from statistical physics combined with methods from analytic combinatorics give rise to efficient algorithms for the random generation of unlabelled objects. The resulting algorithms generate in an unbiased manner discrete configurations that may have nontrivial symmetries, and they do so by means of real-arithmetic computations. We present a collection of construction rules for such samplers, which applies to a wide variety of combinatorial classes, including integer partitions, necklaces, unlabelled functional graphs, dictionaries, series-parallel circuits, term trees and acyclic molecules obeying a variety of constraints, and so on. Under an abstract real-arithmetic computation model, the algorithms are, for many classical structures, of linear complexity provided a small tolerance is allowed on the size of the object drawn. As opposed to many of their discrete competitors, the resulting programs routinely make it possible to generate random objects of sizes in the range 10 4 -10 6 .
This article presents uniform random generators of plane partitions according to the size (the number of cubes in the 3D interpretation). Combining a bijection of Pak with the method of Boltzmann sampling, we obtain random samplers that are slightly superlinear: the complexity is O(n(ln n) 3 ) in approximate-size sampling and O(n 4/3 ) in exact-size sampling (under a real-arithmetic computation model). To our knowledge, these are the first polynomial-time samplers for plane partitions according to the size (there exist polynomial-time samplers of another type, which draw plane partitions that fit inside a fixed bounding box). The same principles yield efficient samplers for (a × b)-boxed plane partitions (plane partitions with two dimensions bounded), and for skew plane partitions. The random samplers allow us to perform simulations and observe limit shapes and frozen boundaries, which have been analysed recently by Cerf and Kenyon for plane partitions, and by Okounkov and Reshetikhin for skew plane partitions.Date: October 22, 2018.
We consider systems of recursively defined combinatorial structures. We give algorithms checking that these systems are well founded, computing generating series and providing numerical values. Our framework is an articulation of the constructible classes of Flajolet and Sedgewick with Joyal's species theory. We extend the implicit species theorem to structures of size zero. A quadratic iterative Newton method is shown to solve well-founded systems combinatorially. From there, truncations of the corresponding generating series are obtained in quasi-optimal complexity. This iteration transfers to a numerical scheme that converges unconditionally to the values of the generating series inside their disk of convergence. These results provide important subroutines in random generation. Finally, the approach is extended to combinatorial differential systems.
International audienceThis article presents a methodology that automatically derives a combinatorial specification for a permutation class C, given its basis B of excluded patterns and the set of simple permutations in C, when these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints in permutations. The obtained specification yields a system of equations satisfied by the generating function of C, this system being always positive and algebraic. It also yields a uniform random sampler of permutations in C. The method presented is fully algorithmic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.