Hybridization technology has proven valuable in enhancing yields in many crops, but was only recently adopted in the small grain cereals. Hybrid varieties in barley (Hordeum vulgare) rely on the cytoplasmic male sterility (CMS) system msm1 derived from Hordeum vulgare ssp. spontaneum. The major restorer gene described for the msm1 system is known as Rfm1 and maps to the top of chromosome 6H. To gain further insight into mechanisms underlying male fertility restoration in barley, we used a mapbased cloning approach to identify the nuclear gene involved in the restoration mechanism of this hybridization system. Taking advantage of the available genomic resources in barley in combination with a custom-made non-gridded BAC library developed from a restorer line, we cloned and sequenced the Rfm1 restorer locus. The characterization and annotation of the nucleotide sequence for the Rfm1 restorer allele allowed for the identification of the candidate gene for Rfm1. The Rfm1 locus carries a tandem repeat of a gene encoding a pentatricopeptide repeat (PPR) protein. Surprisingly, Rfm1 belongs to the PLS-DYW subfamily of PPR genes known for their involvement in RNA editing in plants organelles, but that to date have not been identified as restorer genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.