Effective therapies for COVID-19 are urgently needed. Presently there are more than 800 COVID-19 clinical trials globally, many with drug combinations, resulting in an empirical process with an enormous number of possible combinations. To identify the most promising potential therapies, we developed a biophysical model for the SARS-CoV-2 viral cycle and performed a sensitivity analysis for individual model parameters and all possible pairwise parameter changes (16 2 = 256 possibilities). We found that model-predicted virion production is fairly insensitive to changes in most viral entry, assembly, and release parameters, but highly sensitive to some viral transcription and translation parameters. Furthermore, we found a cooperative benefit to pairwise targeting of transcription and translation, predicting that combined targeting of these processes will be especially effective in inhibiting viral production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.