Background Dysfunction in ventromedial prefrontal cortex (vmPFC) is believed to play a pivotal role in the pathogenesis of mood and anxiety disorders. Leading neurocircuitry models of these disorders propose that hypoactivity in vmPFC engenders disinhibited amygdala activity, and consequently, pathologically elevated levels of negative affect. This model predicts that a selective loss or diminution of vmPFC function would result in heightened amygdala activity. While this prediction has been borne out in rodent lesion and electrophysiological studies using fear conditioning and extinction paradigms, there has not yet been a definitive test of this prediction in humans. Methods In this study, we tested this prediction through a novel use of fMRI in n=4 neurosurgical patients with focal, bilateral vmPFC damage. Results Relative to neurologically healthy comparison subjects, the vmPFC lesion patients exhibited potentiated amygdala responses to aversive images as well as elevated rest-state amygdala functional connectivity. We observed no comparable group differences for activity in other brain regions. Conclusions These results provide unique evidence for the critical role of vmPFC in regulating amygdala activity in humans, and help elucidate the causal neural interactions that underlie mental illness.
An array of cortical and subcortical structures have been implicated in the recognition of emotion from facial expressions. It remains unknown how these regions communicate as parts of a system to achieve recognition, but white matter tracts are likely critical to this process. We hypothesized that (1) damage to white matter tracts would be associated with recognition impairment and (2) the degree of disconnection of association fiber tracts [inferior longitudinal fasciculus (ILF) and/or inferior fronto-occipital fasciculus (IFOF)] connecting the visual cortex with emotion-related regions would negatively correlate with recognition performance. One hundred three patients with focal, stable brain lesions mapped onto a reference brain were tested on their recognition of six basic emotional facial expressions. Association fiber tracts from a probabilistic atlas were coregistered to the reference brain. Parameters estimating disconnection were entered in a general linear model to predict emotion recognition impairments, accounting for lesion size and cortical damage. Damage associated with the right IFOF significantly predicted an overall facial emotion recognition impairment and specific impairments for sadness, anger, and fear. One subject had a pure white matter lesion in the location of the right IFOF and ILF. He presented specific, unequivocal emotion recognition impairments. Additional analysis suggested that impairment in fear recognition can result from damage to the IFOF and not the amygdala. Our findings demonstrate the key role of white matter association tracts in the recognition of the facial expression of emotion and identify specific tracts that may be most critical.
Objective Psychopathy is a personality disorder associated with severely antisocial behavior and a host of cognitive and affective deficits. The neuropathological basis of the disorder has not been clearly established. Cortical thickness is a sensitive measure of brain structure that has been used to identify neurobiological abnormalities in a number of psychiatric disorders. The purpose of this study is to evaluate cortical thickness and corresponding functional connectivity in criminal psychopaths. Method Using T1 MRI data, we computed cortical thickness maps in a sample of adult male prison inmates selected based on psychopathy diagnosis (n=21 psychopathic inmates, n=31 non-psychopathic inmates). Using rest-fMRI data from a subset of these inmates (n=20 psychopathic inmates, n=20 non-psychopathic inmates), we then computed functional connectivity within networks exhibiting significant thinning among psychopaths. Results Relative to non-psychopaths, psychopaths exhibited significantly thinner cortex in a number of regions, including left insula and dorsal anterior cingulate cortex, bilateral precentral gyrus, bilateral anterior temporal cortex, and right inferior frontal gyrus. These neurostructural differences were not due to differences in age, IQ, or substance abuse. Psychopaths also exhibited a corresponding reduction in functional connectivity between left insula and left dorsal anterior cingulate cortex. Conclusions Psychopathy is associated with a distinct pattern of cortical thinning and reduced functional connectivity.
Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the "factors" and "facets" of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder.
Functional neuroimaging studies suggest that the medial PFC (mPFC) is a key component of a large-scale neural system supporting a variety of self-related processes. However, it remains unknown whether the mPFC is critical for such processes. In this study, we used a human lesion approach to examine this question. We administered a standard trait judgment paradigm [Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794, 2002] to patients with focal brain damage to the mPFC. The self-reference effect (SRE), a memory advantage conferred by self-related processing, served as a measure of intact self-processing ability. We found that damage to the mPFC abolished the SRE. The results demonstrate that the mPFC is necessary for the SRE and suggest that this structure is important for self-referential processing and the neural representation of self.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.