The Ntn-hydrolases~N-terminal nucleophile! are a superfamily of diverse enzymes that has recently been characterized. All of the proteins in this family are activated autocatalytically; they contain an N-terminally located catalytic nucleophile, and they cleave an amide bond. In the present study, the structures of four enzymes of this superfamily are compared in more detail. Although the amino acid sequence homology is almost completely absent, the enzymes share a similar abba-core structure. The central b-sheets in the core were found to have different packing angles, ranging from 5 to 358. In the Ntn-hydrolases under study, eight totally conserved secondary structure units were found~region C!. Five of them were observed to contain the greatest number of conserved and functionally important residues and are therefore crucial for the structure and function of Ntn-hydrolases. Two additional regions, consisting of secondary structure units~regions A and B!, were found to be in structurally similar locations, but in different orders in the polypeptide chain. The catalytic machinery is located in the structures in a similar manner, and thus the catalytic mechanisms of all of the enzymes are probably similar. However, the substrate binding and the oxyanion hole differed partially.
The high resolution crystal structure of human lysosomal aspartylglucosaminidase (AGA) has been determined. This lysosomal enzyme is synthesized as a single polypeptide precursor, which is immediately post-translationally cleaved into alpha- and beta-subunits. Two alpha- and beta-chains are found to pack together forming the final heterotetrameric structure. The catalytically essential residue, the N-terminal threonine of the beta-chain is situated in the deep pocket of the funnel-shaped active site. On the basis of the structure of the enzyme-product complex we present a catalytic mechanism for this lysosomal enzyme with an exceptionally high pH optimum. The three-dimensional structure also allows the prediction of the structural consequences of human mutations resulting in aspartylglucosaminuria (AGU), a lysosomal storage disease.
Aspartylglucosaminidase (AGA) is a lysosomal asparaginase that participates in the breakdown of glycoproteins by cleaving the amide bond between the asparagine and the oligosaccharide chain. Active AGA is an (alphabeta)2 heterotetramer of two non‐identical subunits that are cleaved proteolytically from an enzymatically inactive precursor polypeptide. On the basis of the three‐dimensional structure recently determined by us, we have here mutagenized the putative active site amino acids of AGA and studied by transient expression the effect of targeted substitutions on the enzyme activity and catalytic properties of AGA. These analyses support the novel type of catalytic mechanism, suggested previously by us, in which AGA utilizes as the nucleophile the N‐terminal residue of the beta subunit and most importantly its alpha‐amino group as a base that increases the nucleophilicity of the OH group. We also provide evidence for autocatalytic activation of the inactive AGA precursor and putative involvement of active site amino acids in the proteolytic processing. The data obtained on the structure and function of AGA would indicate that AGA is a member of a recently described novel class of hydrolytic enzymes (amidohydrolases) sharing a common structural determinant in their three‐dimensional structure and whose catalytic mechanisms with an N‐terminal nucleophile seem basically to be similar.
Secretory, membrane, and lysosomal proteins undergo covalent modifications and acquire their secondary and tertiary structure in the lumen of the endoplasmic reticulum (ER). In order to pass the ER quality control system and become transported to their final destinations, many of them are also assembled into oligomers. We have recently determined the three-dimensional structure of lysosomal aspartylglucosaminidase (AGA), which belongs to a newly discovered family of homologous amidohydrolases, the N-terminal nucleophile hydrolases. Members of this protein family are activated from an inactive precursor molecule by an autocatalytic proteolytic processing event whose exact mechanism has not been thoroughly determined. Here we have characterized in more detail the initial events in the ER required for the formation of active AGA enzyme using transient expression of polypeptides carrying targeted amino acid substitutions. We show that His 124 at an interface between two heterodimers of AGA is crucial for the thermodynamically stable oligomeric structure of AGA. Furthermore, the side chain of Thr 206 is essential both for the proteolytic activation and enzymatic activity of AGA. Finally, the proper geometry of the residues His 204 -Asp 205 seems to be crucial for the activation of AGA precursor polypeptides. We propose here a reaction mechanism for the activation of AGA which could be valid for homologous enzymes as well.
Lysosomal targeting of soluble lysosomal hydrolases is mediated by mannose 6-phosphate receptors, which recognize and bind mannose 6-phosphate residues in the oligosaccharide chains of proteins destined for delivery to lysosomes. This recognition marker is generated by the sequential action of two enzymes, the first of which, UDP-N-acetylglucosamine phosphotransferase, recognizes lysosomal enzymes on the basis of a structural determinant in their polypeptide chains. This recognition event is a key step in lysosomal targeting of soluble proteins, but the exact nature of the recognition determinant is not well understood. In this study we have characterized the phosphotransferase recognition signals of human lysosomal aspartylglucosaminidase (AGA) using transient expression of polypeptides carrying targeted amino acid substitutions. We found that three lysine residues and a tyrosine residing in three spatially distinct regions of the AGA polypeptide are necessary for phosphorylation of the oligosaccharides. Two of the lysines are especially important for the lysosomal targeting efficiency of AGA, which seems to be mostly dictated by the degree of phosphorylation of the alpha subunit oligosaccharide. On the basis of the results of this and previous studies we suggest a general model for recognition of lysosomal enzymes by the phosphotransferase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.