It has recently been reported that all but one of the 102 known serotypes of the genus Rhinovirus segregate into two genetic clusters (C. Savolainen, S. Blomqvist, M. N. Mulders, and T. Hovi, J. Gen. Virol. 83:333-340, 2002). The only exception is human rhinovirus 87 (HRV87). Here we demonstrate that HRV87 is genetically and antigenically highly similar to enterovirus 68 (EV68) and is related to EV70, the other member of human enterovirus group D. The partial nucleotide sequences of the 5 untranslated region, capsid regions VP4/VP2 and VP1, and the 3D RNA polymerase gene of the HRV87 prototype strain F02-3607 Corn showed 97.3, 97.8, 95.2, and 95.9% identity to the corresponding regions of EV68 prototype strain Fermon. The amino acid identities were 100 and 98.1% for the products of the two capsid regions and 97.9% for 3D RNA polymerase. Antigenic cross-reaction between HRV87 and EV68 was indicated by microneutralization with monotypic antisera. Phylogenetic analysis showed definite clustering of HRV87 and EV68 with EV70 for all sequences examined. Both HRV87 and EV68 were shown to be acid sensitive by two different assays, while EV70 was acid resistant, which is typical of enteroviruses. The cytopathic effect induced by HRV87 or EV68 was inhibited by monoclonal antibodies to the decay-accelerating factor known to be the receptor of EV70. We conclude that HRV87 and EV68 are strains of the same picornavirus serotype presenting features of both rhinoviruses and enteroviruses.
Human rhinoviruses (HRV), common agents of respiratory infections, comprise 102 designated serotypes. The genetic relationships of HRV prototype strains and the possibility of using genetic identification of a given HRV field strain were studied. Genomic sequences in the VP4/VP2 region were obtained from all 102 prototype strains. Phylogenetic analysis included 61 recently isolated Finnish field strains. Seventy-six out of the 102 prototype strains clustered in the HRV genetic group A and 25 in group B. Serotype 87 clustered separately and together with human enterovirus 70. The 'percentage' interserotypic differences were generally similar to those between different enterovirus serotypes, but for six pairs of HRV serotypes they were less than 10%. The maximum variation in genetic group A was 41% at the nucleotide level and 28% at the amino acid level, and in genetic group B 34% and 20%, respectively. Judging from the observed interserotypic differences, the 61 Finnish field isolates might represent as many as 19 different serotypes. One cluster of the field strains did not directly associate with any of the prototype strains and might represent a new serotype. However, larger numbers of field isolates of known serotype need to be characterized, possibly also in the VP1 region, to evaluate the feasibility of genetic typing of HRV strains.
The genetic relationships between 131 echovirus type 30 (E-30) field isolates were studied using phylogenetic analysis of three genomic intervals: VP4/VP2 (420 nt), the entire VP1 and VP1/2A (150 nt). The strains had been isolated between 1975-1998, in different European countries, and in Israel and Japan. The maximum genetic variation was 15.7% in the VP4/VP2 region, 21.3% across the VP1/2A junction and 16.7% in the VP1-gene. The clustering patterns were very similar in all three regions. Two distinct genotypes were observed among the European strains, one of which was prevailing, spanning most of the investigated period. The same genotype was previously described to be the most prevalent circulating lineage of E-30 in Northern America. Interestingly, the two other genotypes comprising the prototype strain Bastianni and the oldest European isolates circulating before 1976, respectively, had apparently disappeared. Furthermore, the oldest lineages of the prevailing genotype had likewise disappeared and the recently isolated strains in the prevailing genotype were genetically quite homogeneous, even when isolated in geographic regions far apart. These results indicate that the genetic variability of echovirus 30 is significantly lower than that of other previously characterized enteroviruses. Furthermore, one single, major genotype showed epidemic spread across two continents. Interestingly, despite the low nucleotide variability, maximum amino acid sequence variability in VP1 was surprisingly high, 8.0%, suggesting possible antigenical differences.
Aims/hypothesis. Direct infection of beta cells could explain the diabetogenic effect of enteroviruses. Primary adult human beta cells are susceptible to coxsackievirus infections, which could result in impaired beta-cell function or cell death (coxsackieviruses B3, B4, B5) or both, or no apparent immediate adverse effects (coxsackievirus A9). We extended these studies to additional enterovirus serotypes including several echoviruses, some of which have been associated clinically with the development of Type I (insulin-dependent) diabetes mellitus. Methods. The patterns and consequences of enterovirus infections were investigated in cultured adult human isolated islets. Cell type-specific infection and viability were assessed by immunocytochemical methods. Beta-cell function was studied by perifusion. Results. Poliovirus type 1/Mahoney, coxsackievirus A13, human parechovirus 1 and several echoviruses (serotypes 6, 7, 11) were capable of causing significant functional impairment (p<0.05) and beta-cell death. In contrast, echovirus serotypes 9 and 30 were not destructive. However, when several different field isolates of echovirus 30 were investigated, some of them were found to be clearly more destructive than the corresponding prototype strain. This was also true for echovirus 9. A strain isolated from a 6-week-old baby suffering from acute Type I diabetes was functionally more destructive than either of the echovirus 9 prototype strains. Conclusion/interpretation. These observations indicate that the capacity of an enterovirus to kill human beta cells or impair their function is not entirely defined by the serotype, but in addition by as yet unidentified characteristics of the virus strain involved. Moreover, any serotype could potentially be diabetogenic. [Diabetologia (2002) 45:693-702]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.