Addition of nanoclays or other nanoparticles into various polymers to produce nanocomposites has been extensively utilized in an attempt to enhance the mechanical, physical, and thermal properties of polymers. While some interesting properties have been demonstrated, the resulting nanocomposites have yet to realize their full potential. Nanoparticles in general, and nanoclays in particular, with their nanometer size, high surface area, and the associated predominance of interfaces in the nanocomposites, can function as structure and morphology directors, for example stabilizing a metastable or conventionally inaccessible polymer phase, or introduce new energy dissipation mechanisms. Thus, what distinguishes nanoparticles from conventional micrometer-size rigid reinforcements is that their role might not be limited to only adding stiffness to the polymer, but also to directing morphology, as well as introducing new energy-dissipation mechanisms leading to enhanced toughness in the nanocomposites. Herein we demonstrate this potential by reporting a remarkable (order of magnitude) increase in toughness with a concurrent increase in stiffness in a poly(vinylidene fluoride) (PVDF) nanocomposite.The kinetics of crystallite growth and the details of crystallite morphology of semicrystalline polymers can be affected by the presence of layered silicates. [1,2] Although some changes in morphology have been described in polymer/nanoparticle hybrids, [3±7] near-total stabilization and control of a crystalline phase, coupled with dramatic enhancements in materials properties, has not yet been reported. PVDF is an important engineering plastic. It is used extensively in the pulp and paper industry due to its resistance to halogens and acids, in nuclear-waste processing for radiation-, and hot-acid applications, and in the chemical processing industry for chemical and high-temperature applications. It is also used in various device applications, due to its unique piezoelectric [8±10] and pyroelectric [11] properties. There are five known crystalline forms or polymorphs of PVDF: a, b, c, d, and e.[12] The a phase is the most common in melt crystallization, and remains the dominant crystalline form versus the b, and c phases. The c phase does not form except at high temperatures and pressures. Earlier reports have shown that the a phase (chain conformationÐtrans-gauche trans-gauche, tgis inactive with respect to piezo-and pyroelectric properties, while the b form (all trans) exhibits the most activity, and is thus the focus for electromechanical and electroacoustic transducer applications. Thus, the b form has great technological utility and there have been numerous attempts to stabilize this phase. For example, the b form of the PVDF has been obtained by careful crystallization from solution, [13] by melt crystallization at high pressure, by application of a strong electric field, [14] by molecular epitaxy, [15] and by preparing a carbon-coated, highly oriented ultrathin film.[16] Earlier reports have indicated the possibility...
The molecular weight cutoff for glomerular filtration is thought to be 30-50 kDa. Here we report rapid and efficient filtration of molecules 10-20 times that mass and a model for the mechanism of this filtration. We conducted multimodal imaging studies in mice to investigate renal clearance of a single-walled carbon nanotube (SWCNT) construct covalently appended with ligands allowing simultaneous dynamic positron emission tomography, near-infrared fluorescence imaging, and microscopy. These SWCNTs have a length distribution ranging from 100 to 500 nm. The average length was determined to be 200-300 nm, which would yield a functionalized construct with a molecular weight of ∼350-500 kDa. The construct was rapidly (t 1/2 ∼ 6 min) renally cleared intact by glomerular filtration, with partial tubular reabsorption and transient translocation into the proximal tubular cell nuclei. Directional absorption was confirmed in vitro using polarized renal cells. Active secretion via transporters was not involved. Mathematical modeling of the rotational diffusivity showed the tendency of flow to orient SWCNTs of this size to allow clearance via the glomerular pores. Surprisingly, these results raise questions about the rules for renal filtration, given that these large molecules (with aspect ratios ranging from 100:1 to 500:1) were cleared similarly to small molecules. SWCNTs and other novel nanomaterials are being actively investigated for potential biomedical applications, and these observations-that high aspect ratio as well as large molecular size have an impact on glomerular filtration-will allow the design of novel nanoscalebased therapeutics with unusual pharmacologic characteristics.multimodal imaging | nanotechnology | renal C arbon nanotubes (CNTs) have interesting properties and have been proposed as novel components of drugs and devices in pharmaceutical and biomedical applications (1). CNTs have unique intrinsic physical, chemical, electronic, thermal, and optical properties and can be chemically modified (with, e.g., targeting ligands, magnetic, radioactive, fluorescent, and chemotherapeutic moieties) to exhibit additional extrinsic properties (2-4). Pharmacokinetic (PK) studies of covalently functionalized single-wall CNTs (SWCNTs) (5-9) and multiwall (MWCNTs) (10-12) have reported a short blood compartment half-life (1-3 h) and limited tissue (kidneys, liver, and spleen) accumulation and renal excretion. Clearance via renal mechanisms is significant (13), because it provides the opportunity for the host to eliminate SWCNTs, allowing potential therapeutic and diagnostic applications in vivo. The elimination of noncovalently modified SWCNTs has been reported to favor the hepatobiliary route, with evidence of a minor role for the renal route (14).Renal clearance of solutes occurs through a combination of glomerular filtration, active tubular secretion, and passive tubular reabsorption (15). In previous work, we reported radioactivity in the renal cortex and in the urine within 1 h of administration of radiolabeled...
The ability to detect small amounts of materials, especially pathogenic bacteria, is important for medical diagnostics and for monitoring the food supply. Engineered micro- and nanomechanical systems can serve as multifunctional, highly sensitive, immunospecific biological detectors. We present a resonant frequency-based mass sensor, comprised of low-stress silicon nitride cantilever beams for the detection of Escherichia coli (E. coli)-cell-antibody binding events with detection sensitivity down to a single cell. The binding events involved the interaction between anti-E. coli O157:H7 antibodies immobilized on a cantilever beam and the O157 antigen present on the surface of pathogenic E. coli O157:H7. Additional mass loading from the specific binding of the E. coli cells was detected by measuring a resonant frequency shift of the micromechanical oscillator. In air, where considerable damping occurs, our device mass sensitivities for a 15 μm and 25 μm long beam were 1.1 Hz/fg and 7.1 Hz/fg, respectively. In both cases, utilizing thermal and ambient noise as a driving mechanism, the sensor was highly effective in detecting immobilized anti-E. coli antibody monolayer assemblies, as well as single E. coli cells. Our results suggest that tailoring of oscillator dimensions is a feasible approach for sensitivity enhancement of resonant mass sensors.
We have demonstrated high-sensitivity detection of bacteria using an array of bulk micromachined resonant cantilevers. The biological sensor is a micromechanical oscillator that consists of an array of silicon-nitride cantilevers with an immobilized antibody layer on the surface of the resonator. Measured resonant frequency shift as a function of the additional cell loading was observed and correlated to the mass of the specifically bound Escherichia coli O157:H7 cells. Deposition and subsequent detection of E. coli cells was achieved under ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.