Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.
Randomness is a vital resource for modern day information processing, especially for cryptography. A wide range of applications critically rely on abundant, high quality random numbers generated securely. Here we show how to expand a random seed at an exponential rate without trusting the underlying quantum devices. Our approach is secure against the most general adversaries, and has the following new features: cryptographic level of security, tolerating a constant level of imprecision in the devices, requiring only a unit size quantum memory per device component for the honest implementation, and allowing a large natural class of constructions for the protocol. In conjunct with a recent work by Chung, Shi and Wu, it also leads to robust unbounded expansion using just 2 multi-part devices. When adapted for distributing cryptographic keys, our method achieves, for the first time, exponential expansion combined with cryptographic security and noise tolerance. The proof proceeds by showing that the Rényi divergence of the outputs of the protocol (for a specific bounding operator) decreases linearly as the protocol iterates. At the heart of the proof are a new uncertainty principle on quantum measurements, and a method for simulating trusted measurements with untrusted devices.
Colbeck (Thesis, 2006) proposed using Bell inequality violations to generate certified random numbers. While full quantum-security proofs have been given, it remains a major open problem to identify the broadest class of Bell inequalities and lowest performance requirements to achieve such security. In this paper, working within the broad class of spot-checking protocols, we prove exactly which Bell inequality violations can be used to achieve full security. Our result greatly improves the known noise tolerance for secure randomness expansion: for the commonly used CHSH game, full security was only known with a noise tolerance of 1.5%, and we improve this to 10.3%. We also generalize our results beyond Bell inequalities and give the first security proof for randomness expansion based on Kochen-Specker inequalities. The central technical contribution of the paper is a new uncertainty principle for the Schatten norm, which is based on the uniform convexity inequality of Ball, Carlen, and Lieb (Inventiones mathematicae, 115:463-482, 1994).
Articles you may be interested inClassical positivity, quantum positivity and entanglement of a multi-partite density matrix, with the example of polarized reactions AIP Conf.On the measure of electron correlation and entanglement in quantum chemistry based on the cumulant of the second-order reduced density matrix The cumulant two-particle reduced density matrix as a measure of electron correlation and entanglement Quantum entanglement plays a central role in quantum information processing. A main objective of the theory is to classify different types of entanglement according to their interconvertibility through manipulations that do not require additional entanglement to perform. While bipartite entanglement is well understood in this framework, the classification of entanglements among three or more subsystems is inherently much more difficult. In this paper, we study pure state entanglement in systems of dimension 2 m n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication ͑SLOCC͒. We introduce a connection between entanglement manipulations in these systems and the wellstudied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2 m n states are SLOCC equivalent. We then proceed to present a canonical form for all 2 m n states based on the matrix pencil construction such that two states are equivalent if and only if they have the same canonical form. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 2 3 n systems, we also determine the hierarchy between these classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.