Understanding cellulose hornification provides crucial information regarding drying of pulp, paper, and other cellulosic materials as well as recycling them. By measuring drainage, fiber width, and water retention value of hardwood and softwood pulps before and after sheet forming and after different drying procedures at different achieved levels of solids, the hornification was evaluated. The water retention value was also measured for the pulps when dried from acetone to observe what happens when hydrogen bonds are not available in the liquid phase. The drainage and fiber width decreased with increasing solids content; the fibers became increasingly stiff with increased water removal. Water retention measurements indicated that hornification is a stepwise process with large drops in fiber flexibility as soon as the fibers are being processed and later after a certain amount of water has been removed. In sum, the fibers must achieve a certain solids content to show hornification, and hydrogen bonds in water draw the cellulose surfaces together to create hornification. The mechanism of hornification is believed to be driven by hydrogen bonds and related to the distance between cellulose chains inside the fiber wall. Other types of bonds are probably also present and help with the irreversibility of hornification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.