A review of historical harbour porpoise catches in Danish waters, together with current distribution, are provided. Most information on distribution is derived from historical catch data with a total of about 100,000 animals taken in Little Belt alone and 40,000 from Isefjord area during the 19 th century. Recent sightings surveys and tagging indicate extensive movements of animals within and between Inner Danish Waters and the Skagerrak / North Sea. Biological information is reviewed for the region, drawing on directed catches, bycatches and strandings from a database comprising nearly 1,900 records from 1834 through 1998. Diet, parasites, pollutants, biological parameters (age and reproduction) and body condition are reported, focusing mainly on the period 1996-98 when comprehensive data were collected. In 1980s samples, gadoids were the most important prey items (found in 62% of stomachs) followed by clupeoids (35%), gobiids (30%), and ammodytids (30%). Some dietary differences were observed between North Sea and Inner Danish waters. Pollutant analyses indicated a decline in sumDDT concentrations yet an increase in sumPCB and HCH levels in Danish porpoises, with comparatively higher levels here than in Baltic and Norwegian waters. Heavy metal concentrations appear higher than in Baltic porpoises. Biological parameters indicate a longevity of up to 23 years in both sexes but with fewer than 5% living beyond 12 years. Sexual maturity occurred at slightly over age 3 years in both females and males, with corresponding lengths of about 135 cm in males and 143 cm in females. The data indicate a size range at birth of 65 -75 cm (weight 4.5 -6.7 kg), with a minimum of 60 cm and 3.4 kg, and a likely gestation time of 10 months. Conception most likely occurs during August, with peak births in June.
Low densities of harbour porpoises in winter (November-March) and high densities in summer (AprilOctober) were found in the Sound, connecting the Baltic Sea and Kattegat. Due to their high energy requirements, it is hypothesized that the density of harbour porpoises is related to local prey abundance. This was tested by examining the stomach content of 53 harbour porpoises collected between 1987 and 2010 in the Sound (high season, 34 porpoises; low season, 19 porpoises). A total of 1,442 individual Wsh specimens from thirteen species were identiWed.Twelve of these were present in the high-porpoise density season and seven in the low-density season. The distribution of occurrence and the distribution of number of Wsh species were diVerent between seasons, indicating a shift in prey intake between seasons. Furthermore, during the highdensity season, the mean and total prey weight per stomach as well as the prey species diversity was higher. However, no diVerence was found in the number of prey species between the two seasons, indicating a higher quality of prey in the high-density season. Atlantic cod was found to be the main prey species in terms of weight in the high-density season while Atlantic herring and Atlantic cod were equally important during the low-density season. Prey availability and predictability are suggested as the main drivers for harbour porpoise distribution, and this could be caused by the formation of frontal zones in spring in the northern part of the Sound, leading to prey concentrations in predictable areas.
In marine environments noise from human activities is increasing dramatically, causing animals to alter their behavior and forage less efficiently. These alterations incur energetic costs that can result in reproductive failure, death, and may ultimately influence population viability; yet the link between population dynamics and individual energetics is poorly understood. We present an energy budget model for simulating effects of acoustic disturbance on populations. It accounts for environmental variability and individual state, while incorporating realistic animal movements. Using harbor porpoises (Phocoena phocoena) as a case study, we evaluated population consequences of disturbance from seismic surveys and investigated underlying drivers of vulnerability. The framework reproduced empirical estimates of population structure and seasonal variations in energetics. The largest effects predicted for seismic surveys were in late summer and fall, and were unrelated to local abundance, but instead to lactation costs, water temperature, and body fat. Our results demonstrate that consideration of temporal variation in individual energetics and their link to costs associated with disturbances is imperative when predicting disturbance impacts. These mechanisms are general to animal species, and the framework presented here can be used for gaining new insights into the spatiotemporal variability of animal movements and energetics that control population dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.