BackgroundTransient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation.ResultsWe characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards.ConclusionsThe data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.
Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.
Transient-receptor-potential
melastatin 8 (TRPM8), the predominant
mammalian cold-temperature thermosensor, is a nonselective cation
channel expressed in a subpopulation of sensory neurons in the peripheral
nervous system, including nerve circuitry implicated in migraine pathogenesis:
the trigeminal and pterygopalatine ganglia. Genomewide association
studies have identified an association between TRPM8 and reduced risk
of migraine. This disclosure focuses on medicinal-chemistry efforts
to improve the druglike properties of initial leads, particularly
removal of CYP3A4-induction liability and improvement of pharmacokinetic
properties. A novel series of biarylmethanamide TRPM8 antagonists
was developed, and a subset of leads were evaluated in preclinical
toxicology studies to identify a clinical candidate with an acceptable
preclinical safety profile leading to clinical candidate AMG 333,
a potent and highly selective antagonist of TRPM8 that was evaluated
in human clinical trials.
It is now widely accepted that the fraction of the dose metabolized by a given drug-metabolizing enzyme is one of the major factors governing the magnitude of a drug interaction and the impact of a polymorphism on (total) drug clearance. Therefore, most pharmaceutical companies determine the enzymes involved in the metabolism of a new chemical entity (NCE) in vitro, in conjunction with human data on absorption, distribution, metabolism and excretion. This so called reaction-phenotyping, or isozyme-mapping, usually involves the use of multiple reagents (e.g., recombinant proteins, liver subcellular fractions, enzyme-selective chemical inhibitors and antibodies). For the human CYPs, reagents are readily available and in vitro reaction-phenotyping data are now routinely included in most regulatory documents. Ideally, the various metabolites have been definitively identified, incubation conditions have afforded robust kinetic analyses, and well characterized (high quality) reagents and human tissues have been employed. It is also important that the various in vitro data are consistent (e.g., scaled turnover with recombinant CYP proteins, CYP inhibition and correlation data with human liver microsomes) and enable an integrated in vitro CYP reaction-phenotype. Results of the in vitro CYP reaction-phenotyping are integrated with clinical data (e.g., human radiolabel and drug interaction studies) and a complete package is then submitted for regulatory review. If the NCE receives market approval, information on key routes of clearance and their associated potential for drug-drug interactions are included in the product label. The present review focuses on in vitro CYP reaction-phenotyping and the integration of data. Relatively simple strategies enabling the design and prioritization of follow up clinical studies are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.