Ion traps are a promising platform for the realisation of high-performance quantum computers. To enable the future scalability of these systems, integrated photonic solutions for guiding and manipulating the laser light at chip level are a major step. Such passive optical components offer the great advantage of providing beam radii in the μm range at the location of the ions without increasing the number of bulk optics. Different wavelengths, from UV to NIR, as well as laser beam properties, such as angle or polarisation, are required for different cooling and readout processes of ions. We present simulation results for different optical photonic components, such as grating outcouplers or waveguide splitters and their applications on ion trap chips. Furthermore, we will introduce the experimental setup for the optical characterisation of the fabricated structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.