Abstract. We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT n <∞ denote (∀k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X ≤ T 0 (n) . Let IΣ n and BΣ n denote the Σ n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low 2 ) to models of arithmetic enables us to show that RCA 0 + I Σ 2 + RT
Let N be the set of natural numbers. If A ⊆ N, let [A]n denote the class of all n-element subsets of A. If P is a partition of [N]n into finitely many classes C1, …, Cp, let H(P) denote the class of those infinite sets A ⊆ N such that [A]n ⊆ Ci for some i. Ramsey's theorem [8, Theorem A] asserts that H(P) is nonempty for any such partition P. Our purpose here is to study what can be said about H(P) when P is recursive, i.e. each Ci, is recursive under a suitable coding of [N]n. We show that if P is such a recursive partition of [N]n, then H(P) contains a set which is Πn0 in the arithmetical hierarchy. In the other direction we prove that for each n ≥ 2 there is a recursive partition P of [N]n into two classes such that H(P) contains no Σn0 set. These results answer a question raised by Specker [12].A basic partition is a partition of [N]2 into two classes. In §§2, 3, and 4 we concentrate on basic partitions and in so doing prepare the way for the general results mentioned above. These are proved in §5. Our “positive” results are obtained by effectivizing proofs of Ramsey's theorem which differ from the original proof in [8]. We present these proofs (of which one is a generalization of the other) in §§4 and 5 in order to clarify the motivation of the effective versions.
Abstract. Generic decidability has been extensively studied in group theory, and we now study it in the context of classical computability theory. A set A of natural numbers is called generically computable if there is a partial computable function which agrees with the characteristic function of A on its domain D, and furthermore D has density 1, i.e. limn→∞ |{k < n : k ∈ D}|/n = 1. A set A is called coarsely computable if there is a computable set R such that the symmetric difference of A and R has density 0. We prove that there is a c.e. set which is generically computable but not coarsely computable and vice versa. We show that every nonzero Turing degree contains a set which is neither generically computable nor coarsely computable. We prove that there is a c.e. set of density 1 which has no computable subset of density 1. Finally, we define and study generic reducibility.
We study the degrees of unsolvability of sets which are cohesive (or have weaker recursion-theoretic "smallness" properties). We answer a question raised by the first author in 1972 by showing that there is a cohesive set A whose degree a satisfies a" = 0" and hence is not high. We characterize the jumps of the degrees of r-cohesive sets, and we show that the degiees of r-cohesive sets coincide with those of the cohesive sets. We obtain analogous results for strongly hyperimmune and strongly hyperhyperimmune sets in place of r-cohesive and cohesive sets,respectively. We show that every strongly hyperimmune set whose degree contains either a Boolean combination of CZ sets or a 1-generic set is of high degree. We also study primitive recursive analogues of these notions and in this case we characterize the corresponding degrees exactly. MSC: 03D30, 03D55.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.