Positive displacement expanders are quickly gaining popularity in the flelds of micropower generation and refrigeration engineering. Unlike turbomachine s, expanders can handle two-phase flow applications at low speed and flow rate levels. This paper is concemed with a simple-design positive displacement expander based on the limaçon of Pascal. The paper offers an insight into the thermodynamic workings of the limaçon gas expander and presents a mathematical model to describe the manner in which the port locations affect the expander performance. A stochastic optimization technique is adopted to flnd the locations, for the expander ports, which produce best expander performance for given chamber dimensions. The operating speed and other parameters will be held constant during the optimization procedure. A case study is offered in this paper to prove the validity of the presented approach, and comments are given on how various operating parameters affect system performance in the limaçon design.., '
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.