Every year, thousands of basic military trainees in each service of the U.S. Armed Forces experience acute respiratory disease. The majority of this disease burden results from infection with human adenoviruses. We designed single- and multiplex assays that detect and discriminate adenovirus types B3, E4, B7, B11, B14, and B21. A total of 116 oropharyngeal swab specimens obtained from patients at the Naval Health Research Center were used to validate the new assays. Type-specific singleplex assays were designed and used independently to successfully identify 94 representative patient specimens. The lower limits of detection for our singleplex real-time PCR assays were calculated to be 50, 500, 500, 50, 50, and 50 genomic copies per reaction for human adenovirus type B3 (HAdV-B3), HAdV-E4, HAdV-B7, HAdV-B11, HAdV-B14, and HAdV-B21, respectively. These were then multiplexed to increase efficiency and tested against singleplex assays using titrated controls. The HAdV-B3/B11 and HAdV-E4/B7 multiplex assays were as sensitive and specific as they were individually. The HAdV-B14/B21 multiplex assay was not as efficient at detecting HAdV-B14 as the singleplex assay. Interestingly, a statistically significant difference was found between the viral loads of HAdV-B14 and those of HAdV-B3, -E4, -B7, and -B21 (P < 0.001). The assays did not cross-react with other adenoviruses, influenza virus, respiratory syncytial virus, or respiratory disease-causing bacteria. These assays have the potential to be useful as clinical diagnostic tools for the detection of HAdV infection in adult populations.
In 2007, the Centers for Disease Control and Prevention (CDC) reported that Human adenovirus type 14 (HAdV-14) infected 106 military personnel and was responsible for the death of one U.S. soldier at Lackland Air Force Base in Texas. Identification of the responsible adenovirus, which had not previously been seen in North America and for which rapid diagnostic tools were unavailable, required retrospective analysis at reference laboratories. Initial quarantine measures were also reliant on relatively slow traditional PCR analysis at other locations. To address this problem, we developed a real-time PCR assay that detects a 225 base pair sequence in the HAdV-14a hexon gene. Fifty-one oropharyngeal swab specimens from the Naval Health Research Center, San Diego, CA and Advanced Diagnostic Laboratory, Lackland AFB, TX were used to validate the new assay. The described assay detected eight of eight and 19 of 19 confirmed HAdV-14a clinical isolates in two separate cohorts from respiratory disease outbreaks. The real-time PCR assay had a wide dynamic range, detecting from 102 to 107 copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza, respiratory syncytial virus, or common respiratory tract bacteria. The described assay is easy to use, sensitive and specific for HAdV-14a in clinical throat swab specimens, and very rapid since turnaround time is less than four hours to obtain an answer.
A case of papillary-cystic tumor (PCT) of the pancreas in a young woman is reported. Fine-needle aspiration (FNA) was done preoperatively under ultrasound guidance. The aspirate showed numerous delicate papillary fragments, dyscohesive and monomorphic tumor cells with folded nuclear membranes, and foamy macrophages. A diagnosis of PCT of the pancreas was made based on clinical, radiologic, and cytologic findings. The patient underwent distal pancreatectomy without complications. The histopathologic examination of the surgical tissue confirmed the diagnosis of PCT of the pancreas. The tumor cells were faintly positive with mucicarmine and periodic acid-schiff (PAS) stains. Immunocytochemistry using Ki67 monoclonal antibody showed a cycling index of 0.1 percent, supporting the clinical observation of low metastatic and recurrence rates of this rare tumor. DNA analysis of the tumor showed a DNA index of 1.09 (diploid) and an S-phase fraction of 5.38%. The tumor cells were positive for progesterone receptors (> 15 fmol/mg protein) but negative for estrogen receptors (< 15 fmol/mg protein). Abundant mitochondria, prominent endoplasmic reticulum and few junctional complexes were noted on electron microscopy. Emphasis is placed on accurate diagnosis based on preoperative FNA cytology in order to maximize cure rates while minimizing surgical risk and complications.
Salmonella enterica subsp. enterica serotypes are leading etiological agents of food-borne gastroenteritis. Traditional identification is laborious and time intensive. Faster molecular methods may allow early identification in contaminated food products. We developed a real-time, fluorescence resonance energy transfer hybridization probe polymerase chain reaction (PCR) assay for S. enterica serotypes on the basis of the exclusive presence of the apeE gene in Salmonella Typhimurium. Assay sensitivity for 12 S. enterica serotypes was as low as 1.87 x 10(2) genomic equivalents per milliliter. PCR efficiency was 94% and the dynamic range was linear over six orders of magnitude from 10(0) to 10(6) copies. The lower limit of detection for 12 different food matrices was between 1.5 x 10(2) and 1.5 x 10(5) CFU/mL without pre-enrichment. When combined with high-throughput automated DNA extraction, 32 food specimens were processed and assayed in less than 2 hours, allowing rapid, specific, sensitive detection of S. enterica serotypes in food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.