Focused ultrasound (FUS) is a promising method to open the blood brain barrier (BBB) for treatment of neurodegenerative diseases. Accurate targeting is essential for a successful BBB opening (BBBo). We aim to develop a robust therapy planning for BBBo in mice, which is challenging due to the size of the brain and the influence of the skull on the ultrasound pressure distribution. For enabling mouse individual therapy planning, a simulation tool is proposed, developed and validated. We used the k-Wave toolbox to enable 3D acoustic simulations of the commercial FUS system from Image Guided Therapy (IGT). Micro-CT scans were used to model the geometry of skulls. Simulations using a mouse skull showed an attenuation of approx. 20-24% depending on the position of penetration, which was validated by hydrophone measurements in the same range. Based on these validations we planned BBBo in mice by placing the transducer at different positions over the mouse brain and varying the excitation amplitude. With different transducer positions, the peak pressure in the brain varied between 0.54 M P a and 0.62 M P a at 11% output level, which is expected to enable safe BBBo. Subsequently, in vivo experiments were conducted using the aforementioned simulation parameters. BBBo was confirmed by contrast enhanced T1 weighted magnetic resonance images immediately after sonication.
Cardiac arrhythmias are a widely spread disease in industrialized countries. A common clinical treatment for this disease is radiofrequency ablation (RFA), in which high frequency alternating current creates a lesion on the myocardium. However, the formation of the lesion is not entirely understood. To obtain more information about ablation lesions (ALs) and their electrophysiological properties, we established an in-vitro setup to record electrical activity of rat myocardium. Electrical activity is measured by a circular shaped multielectrode array. This work was focused to gain more information by developing algorithms to process the measured electrical signals to collect different features, which may allow us to characterize an AL. First, pacing artefacts were detected and blanked. Subsequently, data were filtered. Afterwards, activations in atrial signals were detected using a non-linear energy operator (NLEO) and templates of these activations were generated. Finally, we determined different features on each activation in order to evaluate changes of unipolar as well as bipolar electrograms and considered these features before and after ablation. In conclusion, the majority of the signal features delivered significant differences between normal tissue and lesion. Among others, a reduction in peak to peak amplitude and a diminished spectral power in the band 0 to 100 Hz may be useful indicators for AL. These criteria should be verified in future studies with the aim of estimating indirectly the formation of a lesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.