PET and: markers for the pre- and postsynaptic neurons were used to study the dopamine system in vivo in Huntington's disease. The radioligands used were [11C]SCH 23390 for D1-receptors, [11C]raclopride for D2-receptors and [11C]beta-CIT for dopamine transporters. Five patients with Huntington's disease and five matched controls were recruited. Brain anatomy was examined by MRI. The findings in patients were as follows. Postsynaptic D1- and D2-receptor densities were similarly reduced in the striatum. A reduction in D1-receptor density was shown in the temporal cortex; it draws attention to the cortical degeneration in relation to the cognitive deficits observed in Huntington's disease. The reduction of D1- and D2-receptor binding potentials in the striatum correlated significantly with increasing duration of illness. The correlation between the duration of illness and decline of D1- and D2-receptors make these receptors valuable as quantitative markers for the Huntington's disease degenerative process. Besides postsynaptic changes, a significant 50% decrease of [11C]beta-CIT binding to the dopamine transporter was found in the striatum. A reduced striatal blood flow in Huntington's disease cannot be excluded and could account for a small part of the decrease in [11C]beta-CIT binding. We suggest that the finding reflects a loss of presynaptic terminals or a reduced expression of dopamine transporter in the nigrostriatal dopaminergic system in Huntington's disease.
Positron emission tomography (PET) has hitherto been used to examine D2 dopamine receptor binding in the striatum, a region with a high density of receptors. Research has been hampered by the lack of suitable radioligands for detection of the low-density D2 dopamine receptor populations in the limbic and cortical dopamine systems that are implicated in the pathophysiology of schizophrenia. [11C]FLB 457 is a new radioligand with the very high affinity of 20 pmol/L (K(i)) for the D2 and D3 dopamine receptor subtypes. This study in eight healthy subjects was designed to evaluate the suitability of [11C]FLB 457 for quantification of extrastriatal D2/D3 dopamine receptors. PET-data were acquired in the three-dimensional mode and the arterial input function was corrected for labeled metabolites. The standard three-compartment model and four derived approaches were applied to calculate and compare the binding potentials. Besides the striatum, conspicuous radioactivity was found in extrastriatal regions such as the thalamus, the anterior cinguli, and the temporal and frontal cortices. The time activity curves could be described by the three compartment model. The different approaches gave similar binding potential values and the rank order between regions was consistent with that found in vitro. The short time of a PET measurement using [11C]FLB 457 (63 minutes) seemed not to be sufficient for reliable determination of the high binding potential in the striatum. These results are of principal importance because they show the potential for PET quantification of minute receptor populations in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.