Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance of the controller to generate the desired mode while suppressing all other cut on modes in the duct.
NomenclatureNoise shielding benefits associated with an advanced unconventional subsonic transport concept, the Blended-Wing-Body, were studied using a 4-percent scale, 3-engine nacelle model. The study was conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. A highfrequency, wideband point source was placed inside the nacelles of the center engine and one of the side engines in order to simulate broadband engine noise. The sound field of the model was measured with a rotating microphone array that was moved to various stations along the model axis and with a fixed array of microphones that was erected behind the model. Ten rotating microphones were traversed a total of 22 degrees in 2-degree increments. Seven fixed microphones covered an arc that extended from a point in the exhaust exit plane of the center engine (and directly below its centerline) to a point 30 degrees above the jet centerline. While no attempt was made to simulate the noise emission characteristics of an aircraft engine, the model source was intended to radiate sound in a frequency range encompassing 1, 2, and 3 times the blade passage of a typical full-scale engine. In this study, the Blended-Wing-Body model was found to provide significant shielding of inlet noise. In particular, noise radiated downward into the forward sector was reduced by 20 to 25 dB overall in the full-scale frequencies from 2000 to 4000 Hz, decreasing to 10 dB or less at the lower frequencies. Also, it was observed that noise associated with the exhaust radiates into the sector directly below the model downstream to reduce shielding efficiency.
Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.
Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately ½ the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of ½ and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the analytic model results. The analytic model and experiment show similar differences of overall attenuation between one wall treated and both walls treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.