Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.
Lesion studies suggest that primary auditory cortex (A1) is required for accurate sound localization by carnivores and primates. In order to elucidate further its role in spatial hearing, we examined the behavioural consequences of reversibly inactivating ferret A1 over long periods, using Elvax implants releasing the GABA(A) receptor agonist muscimol. Sub-dural polymer placements were shown to deliver relatively constant levels of muscimol to underlying cortex for >5 months. The measured diffusion of muscimol beneath and around the implant was limited to 1 mm. Cortical silencing was assessed electrophysiologically in both auditory and visual cortices. This exhibited rapid onset and was reversed within a few hours of implant removal. Inactivation of cortical neurons extended to all layers for implants lasting up to 6 weeks and throughout at least layers I-IV for longer placements, whereas thalamic activity in layer IV appeared to be unaffected. Blockade of cortical neurons in the deeper layers was restricted to < or = 500 microm from the edge of the implant, but was usually more widespread in the superficial layers. In contrast, drug-free Elvax implants had little discernible effect on the responses of the underlying cortical neurons. Bilateral implants of muscimol-Elvax over A1 produced significant deficits in the localization of brief sounds in horizontal space and particularly a reduced ability to discriminate between anterior and posterior sound sources. The performance of these ferrets gradually improved over the period in which the Elvax was in place and attained that of control animals following its removal. Although similar in nature, these deficits were less pronounced than those caused by cortical lesions and suggest a specific role for A1 in resolving the spatial ambiguities inherent in auditory localization cues.
Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the "cocktail party effect") are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy. C onsiderable plasticity exists in the neural circuits that process sensory information. Although plasticity is greatest during development, certain aspects of the mature brain maintain the capacity to reorganize in response to changes in the activity patterns of sensory inputs. Experience-mediated plasticity is most commonly associated with higher-level response properties that are generated within the brain by serial stages of computation. One of the best examples is provided by the neural mechanisms underlying sound localization, which are adapted by experience to the features of the individual.Identifying the location of sounds produced by potential mates, prey, or predators is one of the most important functions of the auditory system. This ability relies on the extraction of direction-dependent cues generated by the head, torso, and external ears. For localization in the horizontal plane, the separation of the two ears allows mammals to use interaural time differences (ITDs) at low frequencies and interaural level differences (ILDs) at high frequencies (1, 2). These binaural cues also contribute to the ability of listeners to detect and discriminate signals of interest against a background of masking noise (3).ITDs and ILDs do not, by themselves, provide a sufficient basis for localizing a sound source. For individual frequencies, bo...
We have examined the effects on auditory spatial acuity in the horizontal plane of depriving ferrets of patterned visual cues by binocular eyelid suture in infancy or for a comparable period in adulthood. Minimum audible angles (MAAs) were measured for 500-, 100- and 40-ms broadband noise bursts at the midline and at 45 degrees to one side. A logistic regression analysis revealed no consistent difference between the midline MAAs of normal and infant lid-sutured ferrets. However, the lateral field MAAs of the infant-deprived group were significantly smaller and showed less inter-subject variability than those of normal-sighted ferrets. The animals deprived in adulthood were tested in the lateral field only, firstly 6 months after binocular eyelid suture and again after a further 10 months. For the first test, the MAAs achieved by these animals with 500- and 100-ms noise bursts were significantly smaller than the normal values and no different from those of the infant-deprived group. A significant improvement in performance at the two shortest stimulus durations (100 and 40 ms) was observed when the adult-deprived animals were re-tested. Their second-test MAAs did not differ from those of the infant-deprived group at any of the three stimulus durations used, and both groups achieved significantly better scores than the normal-sighted control animals. These results show that prolonged visual deprivation in both juvenile and adult ferrets can lead to a significant improvement in auditory spatial acuity in the lateral sound field. This is consistent with reports that congenitally blind humans can localize peripheral sounds more accurately than normal controls.
Auditory localization experiments typically either require subjects to judge the location of a sound source from a discrete set of response alternatives or involve measurements of the accuracy of orienting responses made toward the source location. To compare the results obtained by both methods, we trained ferrets by positive conditioning to stand on a platform at the center of a circular arena prior to stimulus presentation and then approach the source of a broadband noise burst delivered from 1 of 12 loudspeakers arranged at 30 degrees intervals in the horizontal plane. Animals were rewarded for making a correct choice. We also obtained a non-categorized measure of localization accuracy by recording head-orienting movements made during the first second following stimulus onset. The accuracy of the approach-to-target responses declined as the stimulus duration was reduced, particularly for lateral and posterior locations, although responses to sounds presented in the frontal region of space and directly behind the animal remained quite accurate. Head movements had a latency of approximately 200 ms and varied systematically in amplitude with stimulus direction. However, the final head bearing progressively undershot the target with increasing eccentricity and rarely exceeded 60 degrees to each side of the midline. In contrast to the approach-to-target responses, the accuracy of the head orienting responses did not change much with stimulus duration, suggesting that the improvement in percent correct scores with longer stimuli was due, at least in part, to re-sampling of the acoustical stimulus after the initial head turn had been made. Nevertheless, for incorrect trials, head orienting responses were more closely correlated with the direction approached by the animals than with the actual target direction, implying that at least part of the neural circuitry for translating sensory spatial signals into motor commands is shared by these two behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.