Influx of extracellular Ca++ into bone cells has been postulated as an early action of PTH and other bone resorption-stimulating factors. To test this hypothesis directly, we measured the cytosolic free Ca2+ concentration ([Ca2+]i) in two hormone-responsive human (SaOS-2 and G-292) and two rat osteosarcoma cell lines (Ros 25/1 and Ros 17/2.8) and in primary cultures of bone cells from neonatal mouse calvaria using the fluorescent Ca2+ indicator Quin 2. Actions of bovine PTH-(1-34), vasoactive intestinal peptide, epidermal growth factor, prostaglandin E2, and ionomycin were studied. Medium cAMP (20 min; 37 C; 25 microM 3-isobutyl-1-methylxanthine) was quantitated by RIA. Basal [Ca2+]i was: SaOS-2, 126 +/- 8 nM; G-292, 61 +/- 6 nM; Ros 25/1, 109 +/- 15 nM; Ros 17/2.8, 363 +/- 42 nM; and primary cultures, 266 +/- 39 nM (mean +/- SE; n = 3-14). In each cell type, no acute (1 sec to 20 min) spike in [Ca2+]i was observed in response to PTH (24-120 nM), vasoactive intestinal peptide (100 nM), epidermal growth factor (17 nM), or prostaglandin E2 (2.8 microM). However, in SaOS-2 cells only, PTH reproducibly increased [Ca2+]i 10-15% above basal values beginning about 3 min after hormone addition, and this small increase returned to baseline at 15-20 min. Ionomycin (100 nM) elicited an immediate spike in [Ca2+]i to levels 2- to 4-fold above basal in all cells; the peak [Ca2+]i decayed rapidly (within 4-5 min) to baseline in G-292, Ros 25/1, and Ros 17/2.8 cells. The decay of peak [Ca2+]i in SaOS-2 was prolonged. To test for intact hormone responses in Quin 2-loaded cells, cAMP accumulation was measured. In SaOS-2 and Ros 17/2.8, both control and Quin 2-loaded cells showed similar increases in cAMP in response to PTH. Considering the limitations of the Quin 2 technique, we conclude that in the four hormone-responsive bone cell lines and primary cultures of bone cells tested, acute elevation of [Ca2+]i is not an inevitable consequence of receptor occupancy and/or adenylate cyclase activation by bone resorption-stimulating hormones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.