C57BL/6 mice were vaccinated with plasmid DNA encoding Ag85 from Mycobacterium tuberculosis, with Ag85 protein in adjuvant, or with a combined DNA prime-protein boost regimen. While DNA immunization, as previously described, induced robust Th1-type cytokine responses, protein-in-adjuvant vaccination elicited very poor cytokine responses, which were 10-fold lower than those observed with DNA immunization alone. Injection of Ag85 DNA-primed mice with 30 to 100 g of purified Ag85 protein in adjuvant increased the interleukin-2 and gamma interferon (IFN-␥) response in spleen two-to fourfold. Further, intracellular cytokine analysis by flow cytometry also showed an increase in IFN-␥-producing CD4 ؉ T cells in DNA-primedprotein-boosted animals, compared to those that received only the DNA vaccination. Moreover, these responses appeared to be better sustained over time. Antibodies were readily produced by all three methods of immunization but were exclusively of the immunoglobulin G1 (IgG1) isotype following protein immunization in adjuvant and preferentially of the IgG2a isotype following DNA and DNA prime-protein boost vaccination. Finally, protein boosting increased the protective efficacy of the DNA vaccine against an intravenous M. tuberculosis H37Rv challenge infection, as measured by CFU or relative light unit counts in lungs 1 and 2 months after infection. The capacity of exogenously given protein to boost the DNA-primed vaccination effect underlines the dominant role of Th1-type CD4؉ helper T cells in mediating protection.Tuberculosis (TB) remains a major health problem affecting millions of people worldwide. The only TB vaccine presently available is an attenuated strain of Mycobacterium bovis termed M. bovis BCG. The efficacy of BCG remains controversial, particularly against pulmonary TB in young adults (5), and development of a better vaccine is urgently needed to counter the global threat of this disease (22).Secreted and surface-exposed cell wall proteins are major antigens recognized by the protective immune response against TB and immunization with whole-culture filtrate, a rich source of these extracellular proteins, can protect mice and guinea pigs to some extent against subsequent challenge with the tubercle bacillus (1, 14, 15). A major portion of the secreted proteins in Mycobacterium tuberculosis and BCG culture filtrate is formed by the Ag85 complex, a 30-to 32-kDa family of three proteins (Ag85A, Ag85B, and Ag85C) (38) which all possess a mycoloyltransferase enzyme activity required for the biogenesis of cord factor (4), a dominant structure necessary for maintaining cell wall integrity (19,29). Ag85 complex induces strong T-cell proliferation and gamma interferon (IFN-␥) production in most healthy individuals infected with M. tuberculosis and/or Mycobacterium leprae (24) and in BCGvaccinated mice (16), making it a promising candidate as a protective antigen. Vaccination with naked plasmid DNA encoding Ag85A and Ag85B can stimulate strong humoral and cell-mediated immune responses and confer si...
Mechanisms of cationic lipid-based nucleic acid delivery are receiving increasing attention, but despite this the factors that determine high or low activity of lipoplexes are poorly understood. This study is focused on the fine structure of cationic lipid-DNA complexes (lipoplexes) and its relevance to transfection efficiency. Monocationic (N-(1-(2,3-dioleoyloxy)propyl),N,N,N-trimethylammonium chloride, N-(1-(2,3-dimyristyloxypropyl)-N,N-dimethyl-(2-hydroxyethyl)ammonium bromide) and polycationic (2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate) lipid-based assemblies, with or without neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, cholesterol) were used to prepare lipoplexes of different L(+)/DNA(-) charge ratios. Circular dichroism, cryogenic-transmission electron microscopy, and static light scattering were used for lipoplex characterization, whereas expression of human growth hormone or green fluorescent protein was used to quantify transfection efficiency. All monocationic lipids in the presence of inverted hexagonal phase-promoting helper lipids (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol) induced appearance of Psi(-) DNA, a chiral tertiary DNA structure. The formation of Psi(-) DNA was also dependent on cationic lipid-DNA charge ratio. On the other hand, monocationic lipids either alone or with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine as helper lipid, or polycationic 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate-based assemblies, neither of which promotes a lipid-DNA hexagonal phase, did not induce the formation of Psi(-) DNA. Parallel transfection studies reveal that the size and phase instability of the lipoplexes, and not the formation of Psi(-) DNA structure, correlate with optimal transfection.
The problem of assessing in vivo activity of gene delivery systems is complex. The reporter gene must be carefully chosen depending on the application. Plasmids with strong promoters, enhancers and other elements that optimize transcription and translation should be employed, such as the CMVint and pCIS-CAT constructs. Formulation aspects of cationic lipid-DNA complexes are being studied in several laboratories, and the physical properties and molecular organization of the complexes are being elucidated. Likewise, studies on the mechanism of DNA delivery with cationic lipids are accumulating which support the basic concept that the complexes fuse with biological membranes leading to the entry of intact DNA into the cytoplasm. Naked plasmid DNA administered by various routes is expressed at significant levels in vivo. This observation is not restricted to skeletal and heart muscle, but has been observed in lung, dermis, and in undefined tissues following intravenous administration. Most of the widely available cationic lipids, including Lipofectin, Lipofectamine and DC-cholesterol have a very poor ability to enhance DNA expression above the baseline naked DNA level, at least in lung. In this report we have revealed a novel cationic lipid, DLRIE, which can significantly enhance CAT expression in mouse lung by 25-fold above the naked DNA level. Other compounds are currently being evaluated which can enhance the naked DNA expression even higher. Plasmid vector improvements have led to further increase in in vivo lung expression, so that the net improvement is > 5,000-fold. Results of this nature are advancing the pharmaceutical gene therapy opportunities for synthetic cationic lipid based gene delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.