We have conducted a multistage genomewide association study, using 1,620,742 single-nucleotide polymorphisms to systematically investigate the genetic factors influencing intrinsic skin pigmentation in a population of South Asian descent. Polymorphisms in three genes--SLC24A5, TYR, and SLC45A2--yielded highly significant replicated associations with skin-reflectance measurements, an indirect measure of melanin content in the skin. The associations detected in these three genes, in an additive manner, collectively account for a large fraction of the natural variation of skin pigmentation in a South Asian population. Our study is the first to interrogate polymorphisms across the genome, to find genetic determinants of the natural variation of skin pigmentation within a human population.
Immunomodulation involves the use of antibodies to alter the function of molecules and is an emerging tool for manipulating both plant and animal systems. To realize the full potential of this technology, two major obstacles must be overcome. First, most antibodies do not function well intracellularly because critical disulfide bonds cannot form in the reducing environment of the cytoplasm or because of difficulties in targeting to subcellular organelles. Second, few antibodies bind to the active sites of enzymes and thus they generally do not neutralize enzyme function. Here we show that the unique properties of single-domain antibodies from camelids (camels and llamas) can circumvent both these obstacles. We demonstrate that these antibodies can be correctly targeted to subcellular organelles and inhibit enzyme function in plants more efficiently than antisense approaches. The use of these single-domain antibody fragments may greatly facilitate the successful immunomodulation of metabolic pathways in many organisms.
A novel xyloglucan-specific endo-(1-->4)-beta-D-glucanase, involved in the post-germinative mobilization of xyloglucan storage reserves, has previously been isolated from nasturtium (Tropaeolum majus L.) seed. Its mode of action has been shown, in vitro, to be one of transglycosylation except at low substrate (glycosylacceptor) concentrations when hydrolysis predominates. Here it is shown that this nasturtium seed xyloglucan endo-transglycosylase is encoded by a single gene which is transcribed and processed to a 1.5 kb mRNA. The isolation and DNA sequence analysis of a cDNA copy of the nasturtium xyloglucan endo-transglycosylase transcript is described. The cDNA encodes a 33.5 kDa precursor polypeptide which is subsequently processed to a 31 kDa mature protein. The precursor incorporates an N-terminal signal sequence which probably contains information relevant to the targeting of the enzyme to the cell wall. The computer-predicted isoelectric point (5.14) and low (approximately 0%) alpha-helix content of the deduced mature protein are in excellent agreement with the experimental data obtained using the purified enzyme. The deduced protein sequence lacks homology with known plant endo-(1-->4)-beta-D-glucanases, consistent with the unique properties of the enzyme. Database searches have revealed that a Brassica protein (meri-5) of previously unknown function, but abundantly expressed in expanding tissue, shares structural identity with the nasturtium xyloglucan endo-transglycosylase. The expression of a xyloglucan endo-transglycosylase in expanding tissue would be consistent with the contention that enzymes of this type are involved in cell wall loosening.
A novel xyloglucan-specific endo-(1-->4)-beta-D-glucanase, involved in the post-germinative mobilization of xyloglucan storage reserves, has previously been isolated from nasturtium (Tropaeolum majus L.) seed. Its mode of action has been shown, in vitro, to be one of transglycosylation except at low substrate (glycosylacceptor) concentrations when hydrolysis predominates. Here it is shown that this nasturtium seed xyloglucan endo-transglycosylase is encoded by a single gene which is transcribed and processed to a 1.5 kb mRNA. The isolation and DNA sequence analysis of a cDNA copy of the nasturtium xyloglucan endo-transglycosylase transcript is described. The cDNA encodes a 33.5 kDa precursor polypeptide which is subsequently processed to a 31 kDa mature protein. The precursor incorporates an N-terminal signal sequence which probably contains information relevant to the targeting of the enzyme to the cell wall. The computer-predicted isoelectric point (5.14) and low (approximately 0%) alpha-helix content of the deduced mature protein are in excellent agreement with the experimental data obtained using the purified enzyme. The deduced protein sequence lacks homology with known plant endo-(1-->4)-beta-D-glucanases, consistent with the unique properties of the enzyme. Database searches have revealed that a Brassica protein (meri-5) of previously unknown function, but abundantly expressed in expanding tissue, shares structural identity with the nasturtium xyloglucan endo-transglycosylase. The expression of a xyloglucan endo-transglycosylase in expanding tissue would be consistent with the contention that enzymes of this type are involved in cell wall loosening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.