This article presents a new methodology called Deep Theory of Functional Connections (TFC) that estimates the solutions of partial differential equations (PDEs) by combining neural networks with the TFC. The TFC is used to transform PDEs into unconstrained optimization problems by analytically embedding the PDE’s constraints into a “constrained expression” containing a free function. In this research, the free function is chosen to be a neural network, which is used to solve the now unconstrained optimization problem. This optimization problem consists of minimizing a loss function that is chosen to be the square of the residuals of the PDE. The neural network is trained in an unsupervised manner to minimize this loss function. This methodology has two major differences when compared with popular methods used to estimate the solutions of PDEs. First, this methodology does not need to discretize the domain into a grid, rather, this methodology can randomly sample points from the domain during the training phase. Second, after training, this methodology produces an accurate analytical approximation of the solution throughout the entire training domain. Because the methodology produces an analytical solution, it is straightforward to obtain the solution at any point within the domain and to perform further manipulation if needed, such as differentiation. In contrast, other popular methods require extra numerical techniques if the estimated solution is desired at points that do not lie on the discretized grid, or if further manipulation to the estimated solution must be performed.
This paper extends the univariate Theory of Connections, introduced in (Mortari,2017a), to the multivariate case on rectangular domains with detailed attention to the bivariate case. In particular, it generalizes the bivariate Coons surface, introduced by (Coons,1984), by providing analytical expressions, called constrained expressions, representing all possible surfaces with assigned boundary constraints in terms of functions and arbitrary-order derivatives. In two dimensions, these expressions, which contain a freely chosen function, g(x, y), satisfy all constraints no matter what the g(x, y) is. The boundary constraints considered in this article are Dirichlet, Neumann, and any combinations of them. Although the focus of this article is on two-dimensional spaces, the final section introduces the Tensor Theory of Connections, validated by mathematical proof. This represents the multivariate extension of the Theory of Connections subject to arbitrary-order derivative constraints in rectangular domains. The main task of this paper is to provide an analytical procedure to obtain constrained expressions in any space that can be used to transform constrained problems into unconstrained problems. This theory is proposed mainly to better solve PDEs and stochastic differential equations.
This article presents a reformulation of the Theory of Functional Connections: a general methodology for functional interpolation that can embed a set of user-specified linear constraints. The reformulation presented in this paper exploits the underlying functional structure presented in the seminal paper on the Theory of Functional Connections to ease the derivation of these interpolating functionals—called constrained expressions—and provides rigorous terminology that lends itself to straightforward derivations of mathematical proofs regarding the properties of these constrained expressions. Furthermore, the extension of the technique to and proofs in n-dimensions is immediate through a recursive application of the univariate formulation. In all, the results of this reformulation are compared to prior work to highlight the novelty and mathematical convenience of using this approach. Finally, the methodology presented in this paper is applied to two partial differential equations with different boundary conditions, and, when data is available, the results are compared to state-of-the-art methods.
Differential equations (DEs) are used as numerical models to describe physical phenomena throughout the field of engineering and science, including heat and fluid flow, structural bending, and systems dynamics. While there are many other techniques for finding approximate solutions to these equations, this paper looks to compare the application of the Theory of Functional Connections (TFC) with one based on least-squares support vector machines (LS-SVM). The TFC method uses a constrained expression, an expression that always satisfies the DE constraints, which transforms the process of solving a DE into solving an unconstrained optimization problem that is ultimately solved via least-squares (LS). In addition to individual analysis, the two methods are merged into a new methodology, called constrained SVMs (CSVM), by incorporating the LS-SVM method into the TFC framework to solve unconstrained problems. Numerical tests are conducted on four sample problems: One first order linear ordinary differential equation (ODE), one first order nonlinear ODE, one second order linear ODE, and one two-dimensional linear partial differential equation (PDE). Using the LS-SVM method as a benchmark, a speed comparison is made for all the problems by timing the training period, and an accuracy comparison is made using the maximum error and mean squared error on the training and test sets. In general, TFC is shown to be slightly faster (by an order of magnitude or less) and more accurate (by multiple orders of magnitude) than the LS-SVM and CSVM approaches. IntroductionDifferential equations (DE) and their solutions are important topics in science and engineering. The solutions drive the design of predictive systems models and optimization tools. Currently, these equations are solved by a variety of existing approaches with the most popular based on the Runge-Kutta family [1]. Other methods include those which leverage low-order Taylor expansions, namely Gauss-Jackson [2] and Chebyshev-Picard iteration [3,4,5], which have proven to be highly effective. More recently developed techniques are based on spectral collocation methods [6]. This approach discretizes the domain about collocation points, and the solution of the DE is expressed by a sum of "basis" functions with unknown coefficients that are approximated in order to satisfy the DE as closely as possible. Yet, in order to incorporate boundary conditions, one or more equations must be added to enforce the constraints.The Theory of Functional Connections (TFC) is a new technique that analytically derives a constrained expression which satisfies the problem's constraints exactly while maintaining a function that can be freely chosen [7]. This theory, initially called "Theory of Connections", has been renamed for two reasons. First, the "Theory of Connections" already identifies a specific theory in differential geometry, and second, what this theory is actually doing is "functional interpolation", as it provides all functions satisfying a set of constraints in terms of a function ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.