A miniature electrostatic thruster is being developed in Low Temperature Co-fired Ceramic (LTCC) at Boise State University. The thruster is composed of an antenna to create the plasma, a cylinder to contain the plasma, and grids to extract the plasma beam at high velocity. In this work, the development of the inductively coupled plasma (ICP) antenna in LTCC will be presented. This antenna is fabricated using DuPont 951 LTCC tape. A Direct Write dispenser is used to apply silver paste for the spiral ICP antenna. Using LTCC allows for the antenna to be embedded in the device under a thin sheet of LTCC dielectric, which protects the antenna from ion back bombardment during operation. This thin sheet is the seventh layer of the total device, with the ICP antenna one layer below the top. The design of the antenna is based on the research done by J. Hopwood. This article discusses the fabrication and performance of the ICP antennas in LTCC. These ICP antennas are operated at pressures from 10 mTorr to 1 Torr with radio frequencies (RF) of 500 MHz to 1 GHz to inductively couple with low-pressure argon to produce plasma. The performance of the antennas will be verified with data showing the start and stop power of the plasma at various pressures and an electric field map of the RF field above the antenna
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.