Given a stratified variety X X with strata satisfying a cohomological parity-vanishing condition, we define and show the uniqueness of “parity sheaves,” which are objects in the constructible derived category of sheaves with coefficients in an arbitrary field or complete discrete valuation ring. This construction depends on the choice of a parity function on the strata. If X X admits a resolution also satisfying a parity condition, then the direct image of the constant sheaf decomposes as a direct sum of parity sheaves, and the multiplicities of the indecomposable summands are encoded in certain refined intersection forms appearing in the work of de Cataldo and Migliorini. We give a criterion for the Decomposition Theorem to hold in the semi-small case. Our framework applies to many stratified varieties arising in representation theory such as generalised flag varieties, toric varieties, and nilpotent cones. Moreover, parity sheaves often correspond to interesting objects in representation theory. For example, on flag varieties we recover in a unified way several well-known complexes of sheaves. For one choice of parity function we obtain the indecomposable tilting perverse sheaves. For another, when using coefficients of characteristic zero, we recover the intersection cohomology sheaves and in arbitrary characteristic the special sheaves of Soergel, which are used by Fiebig in his proof of Lusztig’s conjecture.
Abstract. In this paper we study Bezrukavnikov's exotic t-structure on the derived category of equivariant coherent sheaves on the Springer resolution of a connected reductive algebraic group defined over a field of positive characteristic with simply-connected derived subgroup. In particular, we show that the heart of the exotic t-structure is a graded highest weight category, and we study the tilting objects in this heart. Our main tool is the "geometric braid group action" studied by Bezrukavnikov and the second author.
Let G be a connected reductive group over an algebraically closed field F of good characteristic, satisfying some mild conditions. In this paper we relate tilting objects in the heart of Bezrukavnikov's exotic t-structure on the derived category of equivariant coherent sheaves on the Springer resolution of G, and Iwahori-constructible F-parity sheaves on the affine Grassmannian of the Langlands dual group. As applications we deduce in particular the missing piece for the proof of the Mirković-Vilonen conjecture in full generality (i.e. for good characteristic), a modular version of an equivalence of categories due to Arkhipov-Bezrukavnikov-Ginzburg, and an extension of this equivalence./ / Tilt(E G×Gm ( N )) commutes. Hence to conclude we only have to prove that the diagram
We show that tilting modules and parity sheaves on the affine Grassmannian are related through the geometric Satake correspondence, when the characteristic is bigger than an explicit bound.
Abstract. We give geometric descriptions of the category C k (n, d) of rational polynomial representations of GLn over a field k of degree d for d ≤ n, the Schur functor and Schur-Weyl duality. The descriptions and proofs use a modular version of Springer theory and relationships between the equivariant geometry of the affine Grassmannian and the nilpotent cone for the general linear groups. Motivated by this description, we propose generalizations for an arbitrary connected complex reductive group of the category C k (n, d) and the Schur functor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.