Tumor-associated macrophages (TAMs) frequently help to sustain tumor growth and mediate immune suppression in the tumor microenvironment (TME). Here, we identified a subset of iron-loaded, pro-inflammatory TAMs localized in hemorrhagic areas of the TME. The occurrence of iron-loaded TAMs (iTAMs) correlated with reduced tumor size in patients with non-small cell lung cancer. Ex vivo experiments established that TAMs exposed to hemolytic red blood cells (RBCs) were converted into pro-inflammatory macrophages capable of directly killing tumor cells. This anti-tumor effect could also be elicited via iron oxide nanoparticles. When tested in vivo, tumors injected with such iron oxide nanoparticles led to significantly smaller tumor sizes compared to controls. These results identify hemolytic RBCs and iron as novel players in the TME that repolarize TAMs to exert direct anti-tumor effector function. Thus, the delivery of iron to TAMs emerges as a simple adjuvant therapeutic strategy to promote anti-cancer immune responses.
Iron-loaded tumor-associated macrophages (iTAMs) show a pro-inflammatory phenotype, hallmarked by anti-tumorigenic activity and an ability to attenuate tumor growth. Here we explored the relevance of these findings in lung cancer patients by investigating the impact of the iTAM content in the tumor microenvironment (TME) on patient survival. We analyzed 102 human non-small cell lung cancer (NSCLC) paraffin-embedded archival tissue samples for iron levels and macrophage numbers. Interestingly, patients with lung adenocarcinoma accumulating iron in the TME show higher numbers of M1-like pro-inflammatory TAMs and a survival advantage compared to iron-negative patients. By contrast, in patients with lung squamous cell carcinoma iron in the TME does not affect survival, suggesting a unique influence of iron on different histological subtypes of non-small cell lung cancer (NSCLC). We conclude that in lung adenocarcinoma iron may serve as a prognostic marker for patient survival and as a potential therapeutic target for anti-cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.