An integrated steel plant with two blast furnaces with the option to use biomass to partially substitute fossil reductants was simulated. A thermodynamic blast furnace model was used, combined with simpler models of the other unit processes (sintermaking, cokemaking, basic oxygen furnace, hot stoves and power plant) and a nonlinear model of the biomass conversion with respect to the processing temperature. Given an aim steel production rate for the plant, the economics of the plant was optimized by minimizing the specific costs of liquid steel, considering costs of raw materials, energy and CO2 emissions. Limited supply of sinter and coke was optimally allocated to the two blast furnaces and the effects of restrictions in the biomass, oxygen and oil supply on the operating states were studied. An analysis was also undertaken to study how the production rate of the plant would affect the optimal state. The results demonstrate that a non-uniform distribution of the resources can be economically justified, in particular for cases where the blast furnaces operate under different constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.