The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
The lack of electrolytes that simultaneously possess high Coulombic efficiency, conductivity, and voltage stability has hindered the deployment of rechargeable magnesium-ion batteries. With few exceptions, the tenacious oxide layer on magnesium metal has limited the scope of research to halide ion-based electrolytes, which help activate the electrode surface but also limit the working voltage window considerably. Herein, we demonstrate a new class of magnesium electrolytes based on fluoroalkoxyaluminate anions synthesized via a facile and scalable method and its incorporation in a full battery cell. Mixtures of magnesium and aluminum fluoroalkoxides in ethereal solvents result in solutions that can reversibly deposit magnesium metal with near unit efficiency in addition to achieving suitable oxidative stabilities (>3.5 V vs Mg/Mg 2+ on glassy carbon and gold) and conductivities (>6 mS cm −1 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.