We introduce forest straight-line programs (FSLPs) as a compressed representation of unranked ordered node-labelled trees. FSLPs are based on the operations of forest algebra and generalize tree straight-line programs. We compare the succinctness of FSLPs with two other compression schemes for unranked trees: top dags and tree straight-line programs of firstchild/next sibling encodings. Efficient translations between these formalisms are provided. Finally, we show that equality of unranked trees in the setting where certain symbols are associative or commutative can be tested in polynomial time. This generalizes previous results for testing isomorphism of compressed unordered ranked trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.