Residence time distribution (RTD) is a critically important characteristic of groundwater flow systems; however, it cannot be measured directly. RTD can be inferred from tracer data with analytical models (few parameters) or with numerical models (many parameters). The second approach permits more variation in system properties but is used less frequently than the first because large‐scale numerical models can be resource intensive. Using a novel automated approach, a set of 115 inexpensive general simulation models (GSMs) was used to create RTD metrics (fraction of young groundwater, defined as <65 years old; mean travel time of young fraction; median travel time of old fraction; and mean path length). GSMs captured the general trends in measured tritium concentrations in 431 wells. Boosted Regression Tree metamodels were trained to predict these RTD metrics using available wall‐to‐wall hydrogeographic digital sets as explanatory features. The metamodels produced a three‐dimensional distribution of predictions throughout the glacial system that generally matched with the numerical model RTD metrics. In addition to the expected importance of aquifer thickness and recharge rate in predicting RTD metrics, two new data sets, Multi‐Order Hydrologic Position (MOHP) and hydrogeologic terrane were important predictors. These variables by themselves produced metamodels with Nash‐Sutcliffe efficiency close to the full metamodel. Metamodel predictions showed that the volume of young groundwater stored in the glaciated United States is about 6,000 km3, or about 0.5% of globally stored young groundwater.
Potential groundwater contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the groundwater contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the groundwater flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of groundwater flow rates simulated by the groundwater equations with flow rates simulated by a two-dimensional, finite-difference groundwater flow model indicate that the agreement between the simulated flow rates is within ±10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the groundwater flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison of simulated and observed data. A comparison of simulated and observed reservoir water levels would further define limitations to the applicability of the groundwater flow equations to reservoirs in Massachusetts whose shorelines are in contact with a sand and gravel aquifer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.