Introduction and objective Although being standard for scoliosis curve size estimation, COBB angle measurement is well known to be inaccurate, due to a high interobserver variance in end vertebra selection and end plate contour delineation. We propose a stepwise improvement by using a spline constructed from vertebra centroids to resemble spinal curve characteristics more closely. To enhance precision even further, a neural net was trained to detect the centroids automatically. Materials & Methods Vertebra centroids in AP spinal X-ray images of varying quality from 551 scoliosis patients were manually labeled by 4 investigators. With these inputs, splines were generated and the computed curve sizes were compared to the manually measured COBB angles and to the curve estimation obtained from the neural net. Results Splines achieved a higher interobserver correlation of 0.92-0.95 compared to manual COBB measurements (0.83-0.92) and showed 1.5-2 times less variance, depending on the anatomic region. This translates into an average of 1° of interobserver measurement deviation for spline-based curve estimation compared to 3°-8° for COBB measurements. The neural net was even more precise and achieved mean deviations below 0.5°. Conclusion In conclusion, our data suggest an advantage of spline-based automated measuring systems, so further investigations are warranted to abandon manual COBB measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.