Abstract. We construct the space of infinitesimal variations for the Strominger system and an obstruction space to integrability, using elliptic operator theory. We initiate the study of the geometry of the moduli space, describing the infinitesimal structure of a natural foliation on this space. The associated leaves are related to generalized geometry and correspond to moduli spaces of solutions of suitable Killing spinor equations on a Courant algebroid. As an application, we propose a unifying framework for metrics with holonomy SU(3) and solutions of the Strominger system.
We introduce the category of holomorphic string algebroids, whose objects are Courant extensions of Atiyah Lie algebroids of holomorphic principal bundles, as considered by Bressler, and whose morphisms correspond to inner morphisms of the underlying holomorphic Courant algebroids in the sense ofŠevera. This category provides natural candidates for Atiyah Lie algebroids of holomorphic principal bundles for the (complexified) string group and their morphisms. Our main results are a classification of string algebroids in terms ofČech cohomology, and the construction of a locally complete family of deformations of string algebroids via a differential graded Lie algebra.
We provide a new proof of a result of X.X. Chen and G.Tian [4]: for a polarized extremal Kähler manifold, an extremal metric attains the minimum of the modified K-energy. The proof uses an idea of Chi Li [16] adapted to the extremal metrics using some weighted balanced metrics.Date: September 19, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.