The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Mouse breast regression protein 39 (BRP-39; Chi3l1) and its human homologue YKL-40 are chitinase-like proteins that lack chitinase activity. Although YKL-40 is expressed in exaggerated quantities and correlates with disease activity in asthma and many other disorders, the biological properties of BRP-39/YKL-40 have only been rudimentarily defined. We describe the generation and characterization of BRP-39−/− mice, YKL-40 transgenic mice, and mice that lack BRP-39 and produce YKL-40 only in their pulmonary epithelium. Studies of these mice demonstrated that BRP-39−/− animals have markedly diminished antigen-induced Th2 responses and that epithelial YKL-40 rescues the Th2 responses in these animals. The ability of interleukin13 to induce tissue inflammation and fibrosis was also markedly diminished in the absence of BRP-39. Mechanistic investigations demonstrated that BRP-39 and YKL-40 play an essential role in antigen sensitization and immunoglobulin E induction, stimulate dendritic cell accumulation and activation, and induce alternative macrophage activation. These proteins also inhibit inflammatory cell apoptosis/cell death while inhibiting Fas expression, activating protein kinase B/AKT, and inducing Faim 3. These studies establish novel regulatory roles for BRP-39/YKL-40 in the initiation and effector phases of Th2 inflammation and remodeling and suggest that these proteins are therapeutic targets in Th2- and macrophage-mediated disorders.
Chitin is a ubiquitous polysaccharide in fungi, insects, and parasites. We hypothesized that chitin is a size-dependent regulator of innate immunity. To test this hypothesis, we characterized the effects of chitins of different sizes on murine bronchoalveolar or peritoneal macrophages. In these studies, large chitin fragments were inert, while both intermediate-sized chitin (40–70 μm) and small chitin (SC; <40 μm, largely 2–10 μm) stimulated TNF elaboration. In contrast, only SC induced IL-10 elaboration. The effects of intermediate-sized chitin were mediated by pathways that involve TLR2, dectin-1, and NF-κB. In contrast, the effects of SC were mediated by TLR2-dependent and -independent, dectin-1-dependent pathways that involved the mannose receptor and spleen tyrosine kinase. Chitin contains size-dependent pathogen-associated molecular patterns that stimulate TLR2, dectin-1, and the mannose receptor, differentially activate NF-κB and spleen tyrosine kinase, and stimulate the production of pro- and anti-inflammatory cytokines.
Chitin, the second most abundant polysaccharide in nature, is commonly found in lower organisms such as fungi, crustaceans and insects, but not in mammals. Although the non-specific anti-viral and anti-tumor activities of chitin/chitin derivatives were described two decades ago, the immunological effects of chitin have been only recently been addressed. Recent studies demonstrated that chitin has complex and size-dependent effects on innate and adaptive immune responses including the ability to recruit and activate innate immune cells and induce cytokine and chemokine production via a variety of cell surface receptors including macrophage mannose receptor, toll-like receptor 2 (TLR-2), and Dectin-1. They also demonstrated adjuvant effects of chitin in allergen-induced Type 1 or Type 2 inflammation and provided insights into the important roles of chitinases and chitinaselike proteins (C/CLP) in pulmonary inflammation. The status of the field and areas of controversy are highlighted. Keywordschitin; chitinases; chitinase-like protein; innate and adaptive immunity Chitin in NatureChitin, β-(1-4)-poly-N-acetyl D-glucosamine, is widely distributed in nature and is the second most abundant polysaccharide in nature after cellulose. It is found in the cell walls of bacteria and fungi, the exoskeleton of crustaceans (crabs, shrimp, etc.) and insects, the microfilarial sheath of parasitic nematodes, and the lining of the digestive tracts of many insect [1][2][3][4][5][6][7][8]. In these locations, chitin is used by chitin-containing organisms to protect it from the harsh conditions in its environment and host anti-parasite/pathogen immune responses. The mammalian counterpart of chitin has not been described. As some chitin derivatives are known to be non-toxic, non-allergenic, not biodegradable, and biocompatible, a number of prostheses such as artificial skin, contact lenses and surgical stitches have been produced from chitin derivatives and are widely used in medical practice [9]. Interestingly chitin is also a common component of allergy triggering antigens including those in shrimp, crab, cockroaches, and house dust mite [10][11][12]. Thus, it is very common for humans to be exposed to chitin/chitin derivatives in daily life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.