Over recent years, hair has become the ideal matrix for retrospective investigation of chronic abuse, including for tramadol. However, in order to exclude the possibility of external contamination, it is also important to quantify simultaneously its main metabolite, O-desmethyltramadol (M1), which presence in hair reflects systemic exposure. In the present study a methodology aimed at the simultaneous quantification of tramadol and M1 in human hair was developed and validated for the first time. After decontamination of hair samples (60 mg), tramadol and M1 were extracted with methanol in an ultrasonic bath (~5 h). Purification was performed by solid-phase extraction using mixed-mode extraction cartridges. Subsequently to derivatization, analysis was performed by gas chromatography-electron impact/mass spectrometry (GC-EI/MS). The method proved to be selective. The regression analysis for both analytes was shown to be linear in the range of 0.1-20.0 ng/mg with correlation coefficients of 0.9995 and 0.9997 for tramadol and M1, respectively. The coefficients of variation oscillated between 3.85 and 13.24%. The limits of detection were 0.03 and 0.02 ng/mg, and the lower limits of quantification were 0.08 and 0.06 ng/mg for tramadol and M1, respectively. The proof of applicability was performed in hair samples from six patients undergoing tramadol therapy. All samples were positive for tramadol and M1.
The development of analytical techniques that enable the use of hair as an alternative matrix for the analysis of drugs of abuse is useful for confirming the exposure in a larger time window (weeks to months, depending on the length of the hair shaft). In the present study a methodology aimed at the simultaneous quantification of cocaine and morphine in human hair was developed and validated. After decontamination, hair samples (20 mg) were incubated with a mixture of methanol/hydrochloric acid (2:1) at 65 °C overnight (~16 h) in order to extract the drugs of the matrix. Purification was performed by solid-phase extraction using mixed-mode extraction cartridges. After derivatization with N-methyl-N-(trimethylsilyl) trifluoroacetamide, blank, standards and samples were analyzed by gas chromatography/electron impact-mass spectrometry (GC-EI/MS). The method proved to be selective, as there were no interferences of endogenous compounds with the same retention time as cocaine, morphine and ethylmorphine (internal standard). The regression analysis for both analytes showed linearity in the range 0.25-10.00 ng/mg with correlation coefficients ranging from 0.9989 to 0.9991. The coefficients of variation oscillated between 0.83 and 14.60%. The limits of detection were 0.01 and 0.02 ng/mg, and the limits of quantification were 0.03 and 0.06 ng/mg for cocaine and morphine, respectively. The proposed GC-EI/MS method provided an accurate and simple assay with adequate precision and recovery for the quantification of cocaine and morphine in hair samples. The proof of applicability was performed in hair samples obtained from drug addicts enrolled in a Regional Detoxification Treatment Center. The importance of hair samples is highlighted, since positives results were obtained when urine immunoassay analyses were negative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.