In this paper we evaluate the local seismic response for thirteen sites located in the municipalities of Arquata del Tronto and Montegallo, two areas which suffered heavy damage during the Mw 6.0 and Mw 5.4 earthquakes which struck Central Italy on August 24, 2016. The input dataset is made by ground motion recordings of 348 events occurred during the sequence. The spectral site response is estimated by the Generalized Inversion Technique and makes use of reference sites. The interpretation is further improved through the information provided by a reference-site independent method (i.e., the so called Receiver-Function Technique) and by the Horizontal-to-Vertical Spectral Ratios of ambient noise recordings. We also provide an independent estimate of the local amplification by comparing the Peak Ground Velocity and the Spectral Amplitudes observed at each site to the value estimated by well-established Ground Motion Prediction Equations for a rock-class site. The results obtained by the adopted methodologies are all highly consistent, and they emphasize the different seismic behavior of several sites at local scale. Thus, sites located on Quaternary deposits overlying the bedrock, such as Castro, Pretare, Spelonga, Pescara del Tronto, and Capodacqua feature some relevant amplifications in a medium (2-10 Hz) frequency range; two sites at Spelonga show amplifications also at low frequencies; three sites located on stiff formations, i.e. Uscerno, Balzo and Colle d'Arquata, respectively, feature either nearly neutral response or low amplification level. A probable topographic effect was identified at the rock site of Rocca di Arquata (MZ80).
This paper describes the seismological analyses performed within the framework of the seismic microzonation study for the reconstruction of 138 municipalities damaged by the 2016-2017 sequence in Central Italy. Many waveforms were recorded over approximately 15 years at approximately 180 instrumented sites equipped with permanent or temporary stations in an area that includes all the damaged localities. Site response was assessed using earthquake and noise recordings at the selected stations through different parameters, such as spectral amplification curves, fundamental resonance frequencies, site-specific response spectra, and average amplification factors. The present study was a collaboration of many different institutions under the coordination of the Italian Center for Seismic Microzonation and its applications. The results were homogenized and gathered into site-specific forms, which represent the main deliverable for the benefit of Italian Civil Protection. It is remarkable that the bulk of this study was performed in a very short period (approximately 2 months) to provide quantitative information for detailed microzonation and future reconstruction of the damaged municipalities.
It has long been observed that damage due to earthquakes depends greatly on local geological conditions. Alpine valleys represent a typical populated environment where large amplifications can take place owing to the presence of surface soils with poor mechanical properties combined to complex topography of the rock basin. In the framework of the EU Interreg IIIB SISMOVALP Project ‘Seismic hazard and alpine valley response analysis’, a stretch of the Tagliamento River Valley (TRV), located in the north-western part of the Friuli Region (Italy) and close to the epicentre of the 1976 Mw = 6.4 earthquake, has been investigated with the aim to define the buried shape of the valley itself.\ud
Two non-invasive, lowcost, independent geophysical methodswere used: (i) detailed gravity survey and (ii) H/V spectral ratio (HVSR) of microtremors.\ud
Because of structural geological complexity and active tectonics of the Friuli region, an irregular valley shapewas expected in this area. The independent analysis performed by gravity and passive noise, and complemented with refraction seismic velocity profiles, confirms this hypothesis and leads to two models that were consistent, but for some small scale details. The maximum depth estimated is about 400–450 m in the southern part of the valley, while a mean value of 150–180 m is estimated in the northern part. The sediment thickness obtained for this stretch of the TRV is quite large if compared to eastern Alps Plio-Quaternary rates; therefore the valley shape imaged by this study better corresponds to the top of carbonate rocks.\ud
Finally, on the basis of the obtained morphology and some direct measurements,we conclude that the TRV features an overall 1-D seismic response (i.e. the resonance is related only to the\ud
sediment thickness rather than to the cross-section shape), but in its deepest part some limited 2-D effects could take place
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.