The alarmin IL-33 is an IL-1 family member that stimulates pleiotropic immune reactions depending on the target tissue and microenvironmental factors. In this study, we have investigated the role of IL-33/ST2 axis in antitumor response to melanoma. Injection of IL-33 in mice-bearing subcutaneous B16.F10 melanoma resulted in significant tumor growth delay. This effect was associated with intratumoral accumulation of CD8 T cells and eosinophils, decrease of immunosuppressive myeloid cells, and a mixed Th1/Th2 cytokine expression pattern with local and systemic activation of CD8 T and NK cells. Moreover, intranasal administration of IL-33 determined ST2-dependent eosinophil recruitment in the lung that prevented the onset of pulmonary metastasis after intravenous injection of melanoma cells. Accordingly, ST2-deficient mice developed pulmonary metastasis at higher extent than wild-type counterparts, associated with lower eosinophil frequencies in the lung. Of note, depletion of eosinophils by treatment with anti-Siglec-F antibody abolished the ability of IL-33 to both restrict primary tumor growth and metastasis formation. Finally, we show that IL-33 is able to activate eosinophils resulting in efficient killing of target melanoma cells, suggesting a direct antitumor activity of eosinophils following IL-33 treatment. Our results advocate for an eosinophil-mediated antitumoral function of IL-33 against melanoma, thus opening perspectives for novel cancer immunotherapy strategies.
Interleukin-33 (IL-33) is a IL-1 family member of cytokines exerting pleiotropic activities. In the steady-state, IL-33 is expressed in the nucleus of epithelial, endothelial, and fibroblast-like cells acting as a nuclear protein. In response to tissue damage, infections or necrosis IL-33 is released in the extracellular space, where it functions as an alarmin for the immune system. Its specific receptor ST2 is expressed by a variety of immune cell types, resulting in the stimulation of a wide range of immune reactions. Recent evidences suggest that different IL-33 isoforms exist, in virtue of proteolytic cleavage or alternative mRNA splicing, with potentially different biological activity and functions. Although initially studied in the context of allergy, infection, and inflammation, over the past decade IL-33 has gained much attention in cancer immunology. Increasing evidences indicate that IL-33 may have opposing functions, promoting, or dampening tumor immunity, depending on the tumor type, site of expression, and local concentration. In this review we will cover the biological functions of IL-33 on various immune cell subsets (e.g., T cells, NK, Treg cells, ILC2, eosinophils, neutrophils, basophils, mast cells, DCs, and macrophages) that affect anti-tumor immune responses in experimental and clinical cancers. We will also discuss the possible implications of diverse IL-33 mutations and isoforms in the anti-tumor activity of the cytokine and as possible clinical biomarkers.
Purpose: Certain chemotherapeutics, particularly cyclophosphamide, can enhance the antitumor efficacy of immunotherapy. A better understanding of the cellular and molecular basis of cyclophosphamide-mediated immunomodulation is needed to improve the efficacy of chemoimmunotherapy. Experimental Design: Transcript profiling and flow cytometry were used to explore cyclophosphamide-induced immunoadjuvanticity in patients with hematologic malignancies. Results: A single high-dose treatment rapidly (1–2 days) induced peripheral blood mononuclear cell (PBMC) transcriptional modulation, leading to reduction of cell-cycle and biosynthetic/metabolic processes and augmentation of DNA damage and cell death pathways (p53 signaling pathway), death-related scavenger receptors, antigen processing/presentation mediators, T-cell activation markers and, noticeably, a type I IFN (IFN-I) signature (OAS1, CXCL10, BAFF, IFITM2, IFI6, IRF5, IRF7, STAT2, UBE2L6, UNC93B1, ISG20L1, TYK2). Moreover, IFN-I–induced proinflammatory mediators (CXCL10, CCL2, IL-8, and BAFF) were increased in patients' plasma. Accordingly, cyclophosphamide induced the expansion/activation of CD14+CD16+ monocytes, of HLA-DR+, IL-8RA+, and MARCO+ monocytes/dendritic cells, and of CD69+, OX40+, and IL-8RA+ lymphocytes. Conclusions: Altogether, these data identify the cyclophosphamide-induced immunomodulatory factors in humans and indicate that preconditioning chemotherapy may stimulate immunity as a consequence of danger perception associated with blood cell death, through p53 and IFN-I–related mechanisms. Clin Cancer Res; 19(15); 4249–61. ©2013 AACR.
Eosinophils are major effectors of Th2-related pathologies, frequently found infiltrating several human cancers. We recently showed that eosinophils play an essential role in anti-tumor responses mediated by immunotherapy with the ‘alarmin’ intereukin-33 (IL-33) in melanoma mouse models. Here, we analyzed the mechanisms by which IL-33 mediates tumor infiltration and antitumor activities of eosinophils. We show that IL-33 recruits eosinophils indirectly, via stimulation of tumor cell-derived chemokines, while it activates eosinophils directly, up-regulating CD69, the adhesion molecules ICAM-1 and CD11b/CD18, and the degranulation marker CD63. In co-culture experiments with four different tumor cell lines, IL-33-activated eosinophils established large numbers of stable cell conjugates with target tumor cells, with the polarization of eosinophil effector proteins (ECP, EPX, and granzyme-B) and CD11b/CD18 to immune synapses, resulting in efficient contact-dependent degranulation and tumor cell killing. In tumor-bearing mice, IL-33 induced substantial accumulation of degranulating eosinophils within tumor necrotic areas, indicating cytotoxic activity in vivo. Blocking of CD11b/CD18 signaling significantly reduced IL-33-activated eosinophils’ binding and subsequent killing of tumor cells, indicating a crucial role for this integrin in triggering degranulation. Our findings provide novel mechanistic insights for eosinophil-mediated anti-tumoral function driven by IL-33. Treatments enabling tumor infiltration and proper activation of eosinophils may improve therapeutic response in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.