Land subsidence (LS) is becoming one of the major problems in coastal and delta cities worldwide. Understanding the current LS situation and the research trends is of paramount importance for further studies and addressing future international research networks. We analyzed the LS-related literature available from the Scopus database. The use of a single database avoided the redundancy of articles, while excluding some subject areas was useful to obtain only studies related to LS. By using VOSviewer and CiteSpace tools, we conducted a bibliometric analysis by considering title, keywords, and abstract to identify the temporal development, the geographical origin, and the area of study of the research. The results revealed a considerable heterogeneity of approaches, thematics, study areas, and research output trends. China, the US, and Italy are the major contributors to the scientific production, but the higher number of articles is not always related to the extension of the LS phenomenon in these countries. The monitoring approach differs worldwide, and univocal modeling is still lacking; from the analysis of the keywords, it is clear that the focus of most studies is on the relationship with the hydrological/hydrogeological aspects. Since the 2000s, however, the development of SAR technologies has boosted the study of the phenomenon from a different point of view.
Coastal areas have become increasingly vulnerable to groundwater salinization, especially in the last century, due to the combined effects of climate change and growing anthropization. In this study, a novel methodology named GALDIT-SUSI was applied in the floodplain of the Volturno River mouth for the current (2018) and future (2050) evaluation of seawater intrusion accounting for the expected subsidence and groundwater salinization rates. Several input variables such as digital surface model, land use classification, subsidence rate and drainage system have been mapped via remote sensing resources. The current assessment highlights how areas affected by salinization coincide with the semiperennial lagoons and inland depressed areas where paleosaline groundwaters are present. The future assessment (2050) shows a marked increase of salinization vulnerability in the coastal strip and in the most depressed areas. The results highlight that the main vulnerability driver is the Revelle index, while predicted subsidence and recharge rates will only slightly affect groundwater salinization. This case study indicates that GALDIT-SUSI is a reliable and easy-to-use tool for the assessment of groundwater salinization in many coastal regions of the world.
In the Mediterranean area, several alluvial coastal plains, developed after the Holocene transgression, are affected by subsidence. The Volturno alluvial-coastal plain, along the eastern Tyrrhenian Sea (southern Italy) is characterized by subsidence rates determined through InSAR data analysis and ranging between 0 and <−20 mm/yr in an area of about 750 kmq across the Volturno River. Inside this area, the pattern of subsidence shows sites with apparently anomalous localized subsidence. To understand the driving mechanisms of this process, a lithostratigraphic reconstruction was provided focusing on the spatial distribution of the horizons considered weak by a geotechnical point of view; then, the subsidence map was overlain spatially with geological data in a Geographic Information System (GIS) environment. The spatial analysis highlighted the major ground deformation occurring within the outer boundary of the incised paleo-valley, corresponding to the Holocene alluvial/transitional filling that overlies a compaction-free Pleistocene basement. Inside this general trend, differential compaction was detected corresponding to the thick occurrence of clay and peat deposits, suggesting that the subsidence rate registered in the plain are due in part to the consolidation of primary settlements of soft and compressible soils that characterize the subsoil of these areas, and in large part to the secondary consolidation settlements.
In order to assess the potential risk of aquifer pollution in an alluvial plain area used as a landfill, a detailed geological and hydraulic model of the subsoil was realised. The chosen area is represented by the transfer site for solid urban waste called "Maruzzella", in the lower plain of the Volturno River. The analysis of lithostratigraphic data allowed a 3D reconstruction of the subsoil, which was subsequently implemented thanks to a hydrostratigraphic characterization. Through the use of GIS, the calculation grids necessary for the characterization of the flows have been built, elaborated through the use of ModFlow with three different 3D models of the subsoil with increasing degrees of geological simplification. The dispersion models created with ModFlow made possible to establish the dispersive dynamics that predominate or coexist in relation to permeability and temporal progression considering different stress periods, respectively equal to 3650 days and 7300 days. The comparison of the geological scenarios highlighted the real dispersive processes, thus underlining the importance of a detailed knowledge of the stratigraphic architecture of the subsoil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.