The article presents a new medical device through an authorial and interdisciplinary approach. It consists of a flexible external fixator, whose flexible property may bring advantages over rigid mechanisms. Its design was inspired by the DNA biological mechanism of condensation, while the modeling was based on the pseudo-rigid modeling technique. From the models obtained, this study conducted prototyping and computational tests to obtain a proof-of-concept of the bioinspired theory and dynamic functioning effectiveness. The prototyping relied on hot glue manufacturing and the computational simulations consisted of linear static analysis. The experimental analysis concluded that the prototype with fewer beams and thinner beams delivered better results in all three parameters: flexibility, height variation and rotation arc. In the computational analysis, among the design models with the variation of the number of beams, the model with 8 beams performed better. Concerning thickness variation, the one whose beams measured 8mm in thickness showed better results. Among the models with length variation, the design made with 100 mm long beams better equilibrated the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.